Zongxia's picture
Update README.md
ef40418 verified
|
raw
history blame
2.83 kB

QA-Evaluation-Metrics

PyPI version qa-metrics

QA-Evaluation-Metrics is a fast and lightweight Python package for evaluating question-answering models. It provides various basic metrics to assess the performance of QA models. Check out our CFMatcher, a matching method going beyond token-level matching and is more efficient than LLM matchings but still retains competitive evaluation performance of transformer LLM models.

Installation

To install the package, run the following command:

pip install qa-metrics

Usage

The python package currently provides four QA evaluation metrics.

Exact Match

from qa_metrics.em import em_match

reference_answer = ["Charles , Prince of Wales"]
candidate_answer = "Prince Charles"
match_result = em_match(reference_answer, candidate_answer)
print("Exact Match: ", match_result)

F1 Score

from qa_metrics.f1 import f1_match,f1_score_with_precision_recall

f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
print("F1 stats: ", f1_stats)

match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
print("F1 Match: ", match_result)

CFMatch

from qa_metrics.cfm import CFMatcher

question = "who will take the throne after the queen dies"
cfm = CFMatcher()
scores = cfm.get_scores(reference_answer, candidate_answer, question)
match_result = cfm.cf_match(reference_answer, candidate_answer, question)
print("Score: %s; CF Match: %s" % (scores, match_result))

Transformer Match

Our fine-tuned BERT model is on 🤗 Huggingface. Our Package also supports downloading and matching directly. More Matching transformer models will be available 🔥🔥🔥

from qa_metrics.transformerMatcher import TransformerMatcher

question = "who will take the throne after the queen dies"
tm = TransformerMatcher("bert")
scores = tm.get_scores(reference_answer, candidate_answer, question)
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
print("Score: %s; CF Match: %s" % (scores, match_result))

Datasets

Our Training Dataset is adapted and augmented from Bulian et al. Our dataset repo includes the augmented training set and QA evaluation testing sets discussed in our paper.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

For any additional questions or comments, please contact [[email protected]].


license: mit