|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
```python |
|
gen_kwargs = { |
|
"max_new_tokens": 100, |
|
"top_k": 70, |
|
"top_p": 0.8, |
|
"do_sample": True, |
|
"no_repeat_ngram_size": 2, |
|
"bos_token_id": tokenizer.bos_token_id, |
|
"eos_token_id": tokenizer.eos_token_id, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"temperature": 0.8, |
|
"use_cache": True, |
|
"repetition_penalty": 1.2, |
|
"num_return_sequences": 1 |
|
} |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
ft = 'gpt-j-onlyk_v2' |
|
tokenizer = AutoTokenizer.from_pretrained(ft) |
|
model = AutoModelForCausalLM.from_pretrained(ft, torch_dtype=torch.float16, low_cpu_mem_usage=True) |
|
model.to(device) |
|
|
|
inp = '''Sophia, 29, a student, meets a male programmer Alex from India, who is 45 <|endoftext|> |
|
Alex: How was your vacation? <|endoftext|> sofie: It was amazing! I went to the beach and it felt like paradise. What about you? |
|
<|endoftext|> Alex: i'm good. Tell me a joke <|endoftext|> Sofie:''' |
|
|
|
prepared = tokenizer.encode(inp, return_tensors='pt').to(model.device) |
|
out = model.generate(input_ids=prepared, **gen_kwargs) |
|
generated = tokenizer.decode(out[0]) |
|
``` |