bert-emotion / README.md
zhangpn's picture
end of training 3 epochs
8e555ef
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - precision
  - recall
model-index:
  - name: bert-emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: emotion
          split: validation
          args: emotion
        metrics:
          - name: Precision
            type: precision
            value: 0.7412691902027423
          - name: Recall
            type: recall
            value: 0.7200253439873575

bert-emotion

This model is a fine-tuned version of distilbert-base-cased on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2007
  • Precision: 0.7413
  • Recall: 0.7200
  • Fscore: 0.7268

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall Fscore
0.8416 1.0 815 0.7683 0.7000 0.7141 0.7062
0.5465 2.0 1630 0.8561 0.7640 0.6735 0.6979
0.2747 3.0 2445 1.2007 0.7413 0.7200 0.7268

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0