long_t5_4 / README.md
zera09's picture
End of training
d60a84f verified
|
raw
history blame
6.52 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/long-t5-tglobal-base
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: long_t5_4
    results: []

long_t5_4

This model is a fine-tuned version of google/long-t5-tglobal-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0847
  • Rouge1: 0.5303
  • Rouge2: 0.3398
  • Rougel: 0.477
  • Rougelsum: 0.477
  • Gen Len: 31.974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.0147 1.0 1000 1.5675 0.4907 0.3059 0.4453 0.4454 25.7975
1.7618 2.0 2000 1.5138 0.5037 0.3169 0.4578 0.458 26.608
1.5904 3.0 3000 1.5015 0.5091 0.3239 0.4645 0.4648 25.5405
1.4555 4.0 4000 1.5083 0.5183 0.3335 0.4727 0.4732 26.777
1.3579 5.0 5000 1.5363 0.5205 0.3353 0.4743 0.4744 27.916
1.2345 6.0 6000 1.5543 0.5193 0.338 0.4772 0.4769 25.6475
1.1663 7.0 7000 1.5570 0.5299 0.3449 0.4837 0.4837 26.9075
1.0754 8.0 8000 1.5953 0.5289 0.3422 0.4804 0.4804 29.1995
0.9901 9.0 9000 1.6392 0.5333 0.3443 0.483 0.4831 28.9815
0.9321 10.0 10000 1.6641 0.5269 0.3361 0.4764 0.4765 28.8695
0.87 11.0 11000 1.7062 0.5299 0.3409 0.4793 0.4794 29.366
0.8062 12.0 12000 1.7558 0.5287 0.342 0.4794 0.4798 29.29
0.7595 13.0 13000 1.8033 0.5256 0.3402 0.4784 0.4783 29.204
0.7195 14.0 14000 1.8229 0.5293 0.3425 0.4802 0.4803 30.156
0.668 15.0 15000 1.8817 0.5288 0.3421 0.4791 0.4792 30.1525
0.6283 16.0 16000 1.9278 0.5294 0.3404 0.478 0.4778 29.942
0.5957 17.0 17000 1.9536 0.5312 0.3416 0.4807 0.4809 29.525
0.5496 18.0 18000 2.0396 0.5309 0.3403 0.4788 0.479 30.359
0.5208 19.0 19000 2.0539 0.5312 0.3442 0.4813 0.481 30.173
0.491 20.0 20000 2.0836 0.5297 0.3395 0.4794 0.4792 29.554
0.4522 21.0 21000 2.1548 0.5282 0.3396 0.4751 0.4753 31.565
0.4339 22.0 22000 2.2076 0.5264 0.338 0.476 0.476 30.0425
0.4095 23.0 23000 2.2331 0.5258 0.3366 0.4751 0.475 31.307
0.3818 24.0 24000 2.3036 0.5275 0.3371 0.4756 0.4753 31.8185
0.362 25.0 25000 2.3462 0.529 0.3374 0.4739 0.4741 32.9885
0.3414 26.0 26000 2.3989 0.5335 0.3444 0.482 0.4819 30.4255
0.3188 27.0 27000 2.4419 0.5257 0.3367 0.4745 0.4744 30.6095
0.2976 28.0 28000 2.4965 0.5256 0.3336 0.4702 0.4701 33.6375
0.2896 29.0 29000 2.4841 0.5254 0.3341 0.4725 0.4725 32.7325
0.2702 30.0 30000 2.5704 0.5298 0.3399 0.4775 0.4778 31.307
0.2583 31.0 31000 2.6376 0.5306 0.3411 0.4773 0.4774 31.0695
0.2472 32.0 32000 2.6134 0.5266 0.3376 0.4729 0.473 32.3075
0.2361 33.0 33000 2.6922 0.5294 0.3391 0.4763 0.4764 31.5785
0.2242 34.0 34000 2.7246 0.5292 0.3383 0.4745 0.4747 32.823
0.2173 35.0 35000 2.7647 0.5294 0.3386 0.4754 0.4754 32.0915
0.2057 36.0 36000 2.7717 0.5297 0.343 0.4781 0.4781 32.132
0.1957 37.0 37000 2.8077 0.5257 0.3372 0.4729 0.4728 32.147
0.1895 38.0 38000 2.8661 0.5268 0.3375 0.4733 0.4734 32.156
0.1818 39.0 39000 2.8841 0.5272 0.3388 0.4747 0.475 31.3275
0.1749 40.0 40000 2.9060 0.5278 0.3395 0.4752 0.4751 31.835
0.1705 41.0 41000 2.9260 0.5262 0.3365 0.4729 0.4732 32.3635
0.163 42.0 42000 2.9924 0.5284 0.3383 0.4754 0.4754 31.4935
0.163 43.0 43000 2.9798 0.5299 0.3403 0.4762 0.4765 31.8165
0.1583 44.0 44000 2.9919 0.5291 0.3397 0.4755 0.4759 31.6065
0.1537 45.0 45000 3.0308 0.5281 0.3381 0.4748 0.4749 31.447
0.1493 46.0 46000 3.0491 0.5287 0.339 0.4753 0.4755 31.944
0.1437 47.0 47000 3.0595 0.5282 0.3383 0.4744 0.4746 31.833
0.1437 48.0 48000 3.0804 0.5307 0.3401 0.477 0.4771 31.837
0.1435 49.0 49000 3.0782 0.5312 0.3406 0.4772 0.4772 31.798
0.1392 50.0 50000 3.0847 0.5303 0.3398 0.477 0.477 31.974

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.2.1
  • Datasets 3.0.1
  • Tokenizers 0.20.0