gemma_summarizer_3
This model is a fine-tuned version of google/gemma-2-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0674
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5969 | 0.9998 | 3150 | 1.7505 |
0.586 | 1.9997 | 6300 | 1.9634 |
0.7215 | 2.9995 | 9450 | 1.8744 |
0.7263 | 3.9994 | 12600 | 1.9856 |
0.8409 | 4.9992 | 15750 | 2.0674 |
Framework versions
- PEFT 0.11.1
- Transformers 4.44.0
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4