AhmetZeer's picture
Update README.md (#2)
b17df13 verified
|
raw
history blame
3.58 kB
metadata
base_model: ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1
license: llama3
language:
  - tr
  - en
tags:
  - gguf
  - ggml
  - llama3
  - cosmosllama
  - turkish llama

CosmsoLLaMa GGUFs

Objective

Due to the need for quantized models in real-time applications, we introduce our GGUF formatted models. These models are part of GGML project with a hope to democratize the use of Large Models. Depending on the quantization type, there are 20+ models.

Features

  • All quantization details are listed on the right by Hugging Face.
  • All the models have been tested in llama.cpp environments, llama-cli and llama-server.
  • Furthermore, a YouTube video has been made to introduce the basics of using lmstudio to utilize these models. 👇 lmstudio_yt

Code Example

Usage example with llama-cpp-python

from llama_cpp import Llama

# Define the inference parameters
inference_params = {
    "n_threads": 4,
    "n_predict": -1,
    "top_k": 40,
    "min_p": 0.05,
    "top_p": 0.95,
    "temp": 0.8,
    "repeat_penalty": 1.1,
    "input_prefix": "<|start_header_id|>user<|end_header_id|>\\n\\n",
    "input_suffix": "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\\n\\n",
    "antiprompt": [],
    "pre_prompt": "Sen bir yapay zeka asistanısın. Kullanıcı sana bir görev verecek. Amacın görevi olabildiğince sadık bir şekilde tamamlamak.",
    "pre_prompt_suffix": "<|eot_id|>",
    "pre_prompt_prefix": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\\n\\n",
    "seed": -1,
    "tfs_z": 1,
    "typical_p": 1,
    "repeat_last_n": 64,
    "frequency_penalty": 0,
    "presence_penalty": 0,
    "n_keep": 0,
    "logit_bias": {},
    "mirostat": 0,
    "mirostat_tau": 5,
    "mirostat_eta": 0.1,
    "memory_f16": True,
    "multiline_input": False,
    "penalize_nl": True
}

# Initialize the Llama model with the specified inference parameters
llama = Llama.from_pretrained(
    repo_id="ytu-ce-cosmos/Turkish-Llama-8b-Instruct-v0.1-GGUF",
    filename="*Q4_K.gguf",
    verbose=False
)
# Example input
user_input = "Türkiyenin başkenti neresidir?"

# Construct the prompt
prompt = f"{inference_params['pre_prompt_prefix']}{inference_params['pre_prompt']}\n\n{inference_params['input_prefix']}{user_input}{inference_params['input_suffix']}"

# Generate the response
response = llama(prompt)

# Output the response
print(response['choices'][0]['text'])

The quantization has been made using llama.cpp. As we have seen, this method tends to give the most stable results.

Obviously, we encountered better inference quality for models with the highest bits. However, the inference time tends to be similar between low-bit models.

Each model's memory footprint can be anticipated by the qunatization docs in either Hugging Face or llama.cpp.

Acknowledgments

  • Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️
  • Thanks to the generous support from the Hugging Face team, it is possible to download models from their S3 storage 🤗

Contact

Feel free to contact us whenever you confront any problems :)

COSMOS AI Research Group, Yildiz Technical University Computer Engineering Department
https://cosmos.yildiz.edu.tr/
[email protected]