|
""" |
|
Generate a large batch of image samples from a model and save them as a large |
|
numpy array. This can be used to produce samples for FID evaluation. |
|
""" |
|
|
|
import argparse |
|
import json |
|
import sys |
|
import os |
|
|
|
sys.path.append('.') |
|
|
|
from pdb import set_trace as st |
|
import imageio |
|
import numpy as np |
|
import torch as th |
|
import torch.distributed as dist |
|
|
|
from guided_diffusion import dist_util, logger |
|
from guided_diffusion.script_util import ( |
|
NUM_CLASSES, |
|
model_and_diffusion_defaults, |
|
create_model_and_diffusion, |
|
add_dict_to_argparser, |
|
args_to_dict, |
|
continuous_diffusion_defaults, |
|
control_net_defaults, |
|
) |
|
|
|
th.backends.cuda.matmul.allow_tf32 = True |
|
th.backends.cudnn.allow_tf32 = True |
|
th.backends.cudnn.enabled = True |
|
|
|
from pathlib import Path |
|
|
|
from tqdm import tqdm, trange |
|
import dnnlib |
|
from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop |
|
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion |
|
import nsr |
|
import nsr.lsgm |
|
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults |
|
|
|
from datasets.shapenet import load_eval_data |
|
from torch.utils.data import Subset |
|
from datasets.eg3d_dataset import init_dataset_kwargs |
|
|
|
SEED = 0 |
|
|
|
|
|
def main(args): |
|
|
|
|
|
|
|
dist_util.setup_dist(args) |
|
logger.configure(dir=args.logdir) |
|
|
|
th.cuda.empty_cache() |
|
|
|
th.cuda.manual_seed_all(SEED) |
|
np.random.seed(SEED) |
|
|
|
|
|
logger.log("creating model and diffusion...") |
|
args.img_size = [args.image_size_encoder] |
|
|
|
|
|
|
|
args.image_size = args.image_size_encoder |
|
|
|
denoise_model, diffusion = create_model_and_diffusion( |
|
**args_to_dict(args, |
|
model_and_diffusion_defaults().keys())) |
|
|
|
if 'cldm' in args.trainer_name: |
|
assert isinstance(denoise_model, tuple) |
|
denoise_model, controlNet = denoise_model |
|
|
|
controlNet.to(dist_util.dev()) |
|
controlNet.train() |
|
else: |
|
controlNet = None |
|
|
|
opts = eg3d_options_default() |
|
if args.sr_training: |
|
args.sr_kwargs = dnnlib.EasyDict( |
|
channel_base=opts.cbase, |
|
channel_max=opts.cmax, |
|
fused_modconv_default='inference_only', |
|
use_noise=True |
|
) |
|
|
|
|
|
|
|
denoise_model.to(dist_util.dev()) |
|
if args.use_fp16: |
|
denoise_model.convert_to_fp16() |
|
denoise_model.eval() |
|
|
|
|
|
logger.log("creating 3DAE...") |
|
auto_encoder = create_3DAE_model( |
|
**args_to_dict(args, |
|
encoder_and_nsr_defaults().keys())) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto_encoder.to(dist_util.dev()) |
|
auto_encoder.eval() |
|
|
|
|
|
logger.log("create dataset") |
|
|
|
if args.objv_dataset: |
|
from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data |
|
else: |
|
from datasets.shapenet import load_data, load_eval_data, load_memory_data |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TrainLoop = { |
|
|
|
|
|
|
|
|
|
'vpsde_crossattn': nsr.lsgm.TrainLoop3DDiffusionLSGM_crossattn, |
|
'vpsde_crossattn_objv': nsr.crossattn_cldm_objv.TrainLoop3DDiffusionLSGM_crossattn, |
|
}[args.trainer_name] |
|
|
|
|
|
if 'vpsde' in args.trainer_name: |
|
sde_diffusion = make_sde_diffusion( |
|
dnnlib.EasyDict( |
|
args_to_dict(args, |
|
continuous_diffusion_defaults().keys()))) |
|
|
|
logger.log('create VPSDE diffusion.') |
|
else: |
|
sde_diffusion = None |
|
|
|
auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs |
|
|
|
training_loop_class = TrainLoop(rec_model=auto_encoder, |
|
denoise_model=denoise_model, |
|
control_model=controlNet, |
|
diffusion=diffusion, |
|
sde_diffusion=sde_diffusion, |
|
loss_class=None, |
|
data=None, |
|
|
|
eval_data=None, |
|
**vars(args)) |
|
|
|
logger.log("sampling...") |
|
dist_util.synchronize() |
|
|
|
|
|
|
|
|
|
|
|
if dist_util.get_rank() == 0: |
|
|
|
(Path(logger.get_dir()) / 'FID_Cals').mkdir(exist_ok=True, |
|
parents=True) |
|
|
|
with open(os.path.join(args.logdir, 'args.json'), 'w') as f: |
|
json.dump(vars(args), f, indent=2) |
|
|
|
|
|
camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:] |
|
|
|
if args.create_controlnet or 'crossattn' in args.trainer_name: |
|
training_loop_class.eval_cldm( |
|
prompt=args.prompt, |
|
unconditional_guidance_scale=args. |
|
unconditional_guidance_scale, |
|
use_ddim=args.use_ddim, |
|
save_img=args.save_img, |
|
use_train_trajectory=args.use_train_trajectory, |
|
camera=camera, |
|
num_instances=args.num_instances, |
|
num_samples=args.num_samples, |
|
export_mesh=args.export_mesh, |
|
|
|
|
|
) |
|
else: |
|
|
|
training_loop_class.eval_ddpm_sample( |
|
training_loop_class.rec_model, |
|
save_img=args.save_img, |
|
use_train_trajectory=args.use_train_trajectory, |
|
export_mesh=args.export_mesh, |
|
|
|
) |
|
|
|
dist.barrier() |
|
logger.log("sampling complete") |
|
|
|
|
|
def create_argparser(): |
|
defaults = dict( |
|
image_size_encoder=224, |
|
triplane_scaling_divider=1.0, |
|
diffusion_input_size=-1, |
|
trainer_name='adm', |
|
use_amp=False, |
|
|
|
|
|
|
|
clip_denoised=False, |
|
num_samples=10, |
|
num_instances=10, |
|
use_ddim=False, |
|
ddpm_model_path="", |
|
cldm_model_path="", |
|
rec_model_path="", |
|
|
|
|
|
logdir="/mnt/lustre/yslan/logs/nips23/", |
|
data_dir="", |
|
eval_data_dir="", |
|
eval_batch_size=1, |
|
num_workers=1, |
|
|
|
|
|
overfitting=False, |
|
image_size=128, |
|
iterations=150000, |
|
schedule_sampler="uniform", |
|
anneal_lr=False, |
|
lr=5e-5, |
|
weight_decay=0.0, |
|
lr_anneal_steps=0, |
|
batch_size=1, |
|
microbatch=-1, |
|
ema_rate="0.9999", |
|
log_interval=50, |
|
eval_interval=2500, |
|
save_interval=10000, |
|
resume_checkpoint="", |
|
resume_cldm_checkpoint="", |
|
resume_checkpoint_EG3D="", |
|
use_fp16=False, |
|
fp16_scale_growth=1e-3, |
|
load_submodule_name='', |
|
ignore_resume_opt=False, |
|
freeze_ae=False, |
|
denoised_ae=True, |
|
|
|
prompt="a red chair", |
|
interval=1, |
|
save_img=False, |
|
use_train_trajectory= |
|
False, |
|
unconditional_guidance_scale=1.0, |
|
use_eos_feature=False, |
|
export_mesh=False, |
|
cond_key='caption', |
|
) |
|
|
|
defaults.update(model_and_diffusion_defaults()) |
|
defaults.update(encoder_and_nsr_defaults()) |
|
defaults.update(loss_defaults()) |
|
defaults.update(continuous_diffusion_defaults()) |
|
defaults.update(control_net_defaults()) |
|
defaults.update(dataset_defaults()) |
|
|
|
parser = argparse.ArgumentParser() |
|
add_dict_to_argparser(parser, defaults) |
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
os.environ[ |
|
"TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" |
|
|
|
args = create_argparser().parse_args() |
|
|
|
args.local_rank = int(os.environ["LOCAL_RANK"]) |
|
args.gpus = th.cuda.device_count() |
|
|
|
args.rendering_kwargs = rendering_options_defaults(args) |
|
|
|
main(args) |
|
|