File size: 12,602 Bytes
87c126b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
"""
Generate a large batch of image samples from a model and save them as a large
numpy array. This can be used to produce samples for FID evaluation.
"""

import argparse
import json
import sys
import os

sys.path.append('.')

from pdb import set_trace as st
import imageio
import numpy as np
import torch as th
import torch.distributed as dist

from guided_diffusion import dist_util, logger
from guided_diffusion.script_util import (
    NUM_CLASSES,
    model_and_diffusion_defaults,
    create_model_and_diffusion,
    add_dict_to_argparser,
    args_to_dict,
    continuous_diffusion_defaults,
    control_net_defaults,
)

th.backends.cuda.matmul.allow_tf32 = True
th.backends.cudnn.allow_tf32 = True
th.backends.cudnn.enabled = True

from pathlib import Path

from tqdm import tqdm, trange
import dnnlib
from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop
from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion
import nsr
import nsr.lsgm
from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, AE_with_Diffusion, rendering_options_defaults, eg3d_options_default, dataset_defaults

from datasets.shapenet import load_eval_data
from torch.utils.data import Subset
from datasets.eg3d_dataset import init_dataset_kwargs

SEED = 0


def main(args):

    # args.rendering_kwargs = rendering_options_defaults(args)

    dist_util.setup_dist(args)
    logger.configure(dir=args.logdir)

    th.cuda.empty_cache()

    th.cuda.manual_seed_all(SEED)
    np.random.seed(SEED)

    # * set denoise model args
    logger.log("creating model and diffusion...")
    args.img_size = [args.image_size_encoder]
    # ! no longer required for LDM
    # args.denoise_in_channels = args.out_chans
    # args.denoise_out_channels = args.out_chans
    args.image_size = args.image_size_encoder  # 224, follow the triplane size

    denoise_model, diffusion = create_model_and_diffusion(
        **args_to_dict(args,
                       model_and_diffusion_defaults().keys()))

    if 'cldm' in args.trainer_name:
        assert isinstance(denoise_model, tuple)
        denoise_model, controlNet = denoise_model

        controlNet.to(dist_util.dev())
        controlNet.train()
    else:
        controlNet = None

    opts = eg3d_options_default()
    if args.sr_training:
        args.sr_kwargs = dnnlib.EasyDict(
            channel_base=opts.cbase,
            channel_max=opts.cmax,
            fused_modconv_default='inference_only',
            use_noise=True
        )  # ! close noise injection? since noise_mode='none' in eg3d

    # denoise_model.load_state_dict(
    #     dist_util.load_state_dict(args.ddpm_model_path, map_location="cpu"))
    denoise_model.to(dist_util.dev())
    if args.use_fp16:
        denoise_model.convert_to_fp16()
    denoise_model.eval()

    # * auto-encoder reconstruction model
    logger.log("creating 3DAE...")
    auto_encoder = create_3DAE_model(
        **args_to_dict(args,
                       encoder_and_nsr_defaults().keys()))

    # logger.log("AE triplane decoder reuses G_ema decoder...")
    # auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg)

    # print(auto_encoder.decoder.w_avg.shape) # [512]

    # auto_encoder.load_state_dict(
    #     dist_util.load_state_dict(args.rec_model_path, map_location="cpu"))

    auto_encoder.to(dist_util.dev())
    auto_encoder.eval()

    # TODO, how to set the scale?
    logger.log("create dataset")

    if args.objv_dataset:
        from datasets.g_buffer_objaverse import load_data, load_eval_data, load_memory_data, load_wds_data
    else:  # shapenet
        from datasets.shapenet import load_data, load_eval_data, load_memory_data

    # if args.cfg in ('afhq', 'ffhq'):
    #     # ! load data
    #     logger.log("creating eg3d data loader...")
    #     training_set_kwargs, dataset_name = init_dataset_kwargs(
    #         data=args.data_dir,
    #         class_name='datasets.eg3d_dataset.ImageFolderDataset'
    #     )  # only load pose here
    #     # if args.cond and not training_set_kwargs.use_labels:
    #     # raise Exception('check here')

    #     # training_set_kwargs.use_labels = args.cond
    #     training_set_kwargs.use_labels = True
    #     training_set_kwargs.xflip = True
    #     training_set_kwargs.random_seed = SEED
    #     # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}'

    #     # * construct ffhq/afhq dataset
    #     training_set = dnnlib.util.construct_class_by_name(
    #         **training_set_kwargs)  # subclass of training.dataset.Dataset

    #     training_set = dnnlib.util.construct_class_by_name(
    #         **training_set_kwargs)  # subclass of training.dataset.Dataset

    #     # training_set_sampler = InfiniteSampler(
    #     #     dataset=training_set,
    #     #     rank=dist_util.get_rank(),
    #     #     num_replicas=dist_util.get_world_size(),
    #     #     seed=SEED)

    #     # data = iter(
    #     #     th.utils.data.DataLoader(dataset=training_set,
    #     #                             sampler=training_set_sampler,
    #     #                             batch_size=args.batch_size,
    #     #                             pin_memory=True,
    #     #                             num_workers=args.num_workers,))
    #     #                             #  prefetch_factor=2))

    #     eval_data = th.utils.data.DataLoader(dataset=Subset(
    #         training_set, np.arange(25)),
    #                                          batch_size=args.eval_batch_size,
    #                                          num_workers=1)

    # else:

        # logger.log("creating data loader...")

        # if args.use_wds:
        #     if args.eval_data_dir == 'NONE':
        #         with open(args.eval_shards_lst) as f:
        #             eval_shards_lst = [url.strip() for url in f.readlines()]
        #     else:
        #         eval_shards_lst = args.eval_data_dir  # auto expanded

        #     eval_data = load_wds_data(
        #         eval_shards_lst, args.image_size, args.image_size_encoder,
        #         args.eval_batch_size, args.num_workers,
        #         **args_to_dict(args,
        #                        dataset_defaults().keys()))

        # else:
        #     eval_data = load_eval_data(
        #         file_path=args.eval_data_dir,
        #         batch_size=args.eval_batch_size,
        #         reso=args.image_size,
        #         reso_encoder=args.image_size_encoder,  # 224 -> 128
        #         num_workers=args.num_workers,
        #         # load_depth=True,  # for evaluation
        #         **args_to_dict(args,
        #                        dataset_defaults().keys()))

    TrainLoop = {
        # 'adm': nsr.TrainLoop3DDiffusion,
        # 'vpsde_ldm': nsr.lsgm.TrainLoop3D_LDM,
        # 'dit': nsr.TrainLoop3DDiffusionDiT,
        # lsgm
        'vpsde_crossattn': nsr.lsgm.TrainLoop3DDiffusionLSGM_crossattn,
        'vpsde_crossattn_objv': nsr.crossattn_cldm_objv.TrainLoop3DDiffusionLSGM_crossattn, # for api compat
    }[args.trainer_name]

    # continuous
    if 'vpsde' in args.trainer_name:
        sde_diffusion = make_sde_diffusion(
            dnnlib.EasyDict(
                args_to_dict(args,
                             continuous_diffusion_defaults().keys())))
        # assert args.mixed_prediction, 'enable mixed_prediction by default'
        logger.log('create VPSDE diffusion.')
    else:
        sde_diffusion = None

    auto_encoder.decoder.rendering_kwargs = args.rendering_kwargs

    training_loop_class = TrainLoop(rec_model=auto_encoder,
                                    denoise_model=denoise_model,
                                    control_model=controlNet,
                                    diffusion=diffusion,
                                    sde_diffusion=sde_diffusion,
                                    loss_class=None,
                                    data=None,
                                    # eval_data=eval_data,
                                    eval_data=None,
                                    **vars(args))

    logger.log("sampling...")
    dist_util.synchronize()

    # all_images = []
    # all_labels = []
    # while len(all_images) * args.batch_size < args.num_samples:

    if dist_util.get_rank() == 0:

        (Path(logger.get_dir()) / 'FID_Cals').mkdir(exist_ok=True,
                                                    parents=True)

        with open(os.path.join(args.logdir, 'args.json'), 'w') as f:
            json.dump(vars(args), f, indent=2)

        # ! use pre-saved camera pose form g-buffer objaverse
        camera = th.load('assets/objv_eval_pose.pt', map_location=dist_util.dev())[:]

        if args.create_controlnet or 'crossattn' in args.trainer_name:
            training_loop_class.eval_cldm(
                prompt=args.prompt,
                unconditional_guidance_scale=args.
                unconditional_guidance_scale,
                use_ddim=args.use_ddim,
                save_img=args.save_img,
                use_train_trajectory=args.use_train_trajectory,
                camera=camera,
                num_instances=args.num_instances,
                num_samples=args.num_samples,
                export_mesh=args.export_mesh, 
                # training_loop_class.rec_model,
                # training_loop_class.ddpm_model
            )
        else:
            # evaluate ldm
            training_loop_class.eval_ddpm_sample(
                training_loop_class.rec_model,
                save_img=args.save_img,
                use_train_trajectory=args.use_train_trajectory,
                export_mesh=args.export_mesh, 
                # training_loop_class.ddpm_model
            )

    dist.barrier()
    logger.log("sampling complete")


def create_argparser():
    defaults = dict(
        image_size_encoder=224,
        triplane_scaling_divider=1.0,  # divide by this value
        diffusion_input_size=-1,
        trainer_name='adm',
        use_amp=False,
        # triplane_scaling_divider=1.0, # divide by this value

        # * sampling flags
        clip_denoised=False,
        num_samples=10,
        num_instances=10, # for i23d, loop different condition
        use_ddim=False,
        ddpm_model_path="",
        cldm_model_path="",
        rec_model_path="",

        # * eval logging flags
        logdir="/mnt/lustre/yslan/logs/nips23/",
        data_dir="",
        eval_data_dir="",
        eval_batch_size=1,
        num_workers=1,

        # * training flags for loading TrainingLoop class
        overfitting=False,
        image_size=128,
        iterations=150000,
        schedule_sampler="uniform",
        anneal_lr=False,
        lr=5e-5,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=1,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=50,
        eval_interval=2500,
        save_interval=10000,
        resume_checkpoint="",
        resume_cldm_checkpoint="",
        resume_checkpoint_EG3D="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
        load_submodule_name='',  # for loading pretrained auto_encoder model
        ignore_resume_opt=False,
        freeze_ae=False,
        denoised_ae=True,
        # inference prompt
        prompt="a red chair",
        interval=1,
        save_img=False,
        use_train_trajectory=
        False,  # use train trajectory to sample images for fid calculation
        unconditional_guidance_scale=1.0,
        use_eos_feature=False,
        export_mesh=False,
        cond_key='caption',
    )

    defaults.update(model_and_diffusion_defaults())
    defaults.update(encoder_and_nsr_defaults())  # type: ignore
    defaults.update(loss_defaults())
    defaults.update(continuous_diffusion_defaults())
    defaults.update(control_net_defaults())
    defaults.update(dataset_defaults())

    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)

    return parser


if __name__ == "__main__":

    # os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO"
    # os.environ["NCCL_DEBUG"] = "INFO"

    os.environ[
        "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"  # set to DETAIL for runtime logging.

    args = create_argparser().parse_args()

    args.local_rank = int(os.environ["LOCAL_RANK"])
    args.gpus = th.cuda.device_count()

    args.rendering_kwargs = rendering_options_defaults(args)

    main(args)