LN3Diff / guided_diffusion /script_util.py
NIRVANALAN
release file
87c126b
raw
history blame
21.6 kB
import argparse
import inspect
from pdb import set_trace as st
from cldm.cldm import ControlledUnetModel, ControlNet
from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps
# from .unet_old import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint
from .unet import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint
import torch as th
from dit.dit_models_xformers import DiT_models
if th.cuda.is_available():
from xformers.triton import FusedLayerNorm as LayerNorm
NUM_CLASSES = 1000
def diffusion_defaults():
"""
Defaults for image and classifier training.
"""
return dict(
learn_sigma=False,
diffusion_steps=1000,
noise_schedule="linear",
standarization_xt=False,
timestep_respacing="",
use_kl=False,
predict_xstart=False,
predict_v=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
mixed_prediction=False, # ! to assign later
)
def classifier_defaults():
"""
Defaults for classifier models.
"""
return dict(
image_size=64,
classifier_use_fp16=False,
classifier_width=128,
classifier_depth=2,
classifier_attention_resolutions="32,16,8", # 16
classifier_use_scale_shift_norm=True, # False
classifier_resblock_updown=True, # False
classifier_pool="attention",
)
def control_net_defaults():
res = dict(
only_mid_control=False, # TODO
control_key='img',
normalize_clip_encoding=False, # zero-shot text inference
scale_clip_encoding=1.0,
cfg_dropout_prob=0.0, # dropout condition for CFG training
# cond_key='caption',
)
return res
def continuous_diffusion_defaults():
# NVlabs/LSGM/train_vada.py
res = dict(
sde_time_eps=1e-2,
sde_beta_start=0.1,
sde_beta_end=20.0,
sde_sde_type='vpsde',
sde_sigma2_0=0.0, # ?
iw_sample_p='drop_sigma2t_iw',
iw_sample_q='ll_iw',
iw_subvp_like_vp_sde=False,
train_vae=True,
pred_type='eps', # [x0, eps]
# joint_train=False,
p_rendering_loss=False,
unfix_logit=False,
loss_type='eps',
loss_weight='simple', # snr snr_sqrt sigmoid_snr
# train_vae_denoise_rendering=False,
diffusion_ce_anneal=True,
enable_mixing_normal=True,
)
return res
def model_and_diffusion_defaults():
"""
Defaults for image training.
"""
res = dict(
# image_size=64,
diffusion_input_size=224,
num_channels=128,
num_res_blocks=2,
num_heads=4,
num_heads_upsample=-1,
num_head_channels=-1,
attention_resolutions="16,8",
channel_mult="",
dropout=0.0,
class_cond=False,
use_checkpoint=False,
use_scale_shift_norm=True,
resblock_updown=False,
use_fp16=False,
use_new_attention_order=False,
denoise_in_channels=3,
denoise_out_channels=3,
# ! controlnet args
create_controlnet=False,
create_dit=False,
create_unet_with_hint=False,
dit_model_arch='DiT-L/2',
# ! ldm unet support
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=-1, # custom transformer support
roll_out=False, # whether concat in batch, not channel
n_embed=
None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
mixing_logit_init=-6,
hint_channels=3,
# unconditional_guidance_scale=1.0,
# normalize_clip_encoding=False, # for zero-shot conditioning
)
res.update(diffusion_defaults())
# res.update(continuous_diffusion_defaults())
return res
def classifier_and_diffusion_defaults():
res = classifier_defaults()
res.update(diffusion_defaults())
return res
def create_model_and_diffusion(
# image_size,
diffusion_input_size,
class_cond,
learn_sigma,
num_channels,
num_res_blocks,
channel_mult,
num_heads,
num_head_channels,
num_heads_upsample,
attention_resolutions,
dropout,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
predict_v,
rescale_timesteps,
rescale_learned_sigmas,
use_checkpoint,
use_scale_shift_norm,
resblock_updown,
use_fp16,
use_new_attention_order,
denoise_in_channels,
denoise_out_channels,
standarization_xt,
mixed_prediction,
# controlnet
create_controlnet,
# only_mid_control,
# control_key,
use_spatial_transformer,
transformer_depth,
context_dim,
n_embed,
legacy,
mixing_logit_init,
create_dit,
create_unet_with_hint,
dit_model_arch,
roll_out,
hint_channels,
# unconditional_guidance_scale,
# normalize_clip_encoding,
):
model = create_model(
diffusion_input_size,
num_channels,
num_res_blocks,
channel_mult=channel_mult,
learn_sigma=learn_sigma,
class_cond=class_cond,
use_checkpoint=use_checkpoint,
attention_resolutions=attention_resolutions,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
dropout=dropout,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
use_new_attention_order=use_new_attention_order,
denoise_in_channels=denoise_in_channels,
denoise_out_channels=denoise_out_channels,
mixed_prediction=mixed_prediction,
create_controlnet=create_controlnet,
# only_mid_control=only_mid_control,
# control_key=control_key,
use_spatial_transformer=use_spatial_transformer,
transformer_depth=transformer_depth,
context_dim=context_dim,
n_embed=n_embed,
legacy=legacy,
mixing_logit_init=mixing_logit_init,
create_dit=create_dit,
create_unet_with_hint=create_unet_with_hint,
dit_model_arch=dit_model_arch,
roll_out=roll_out,
hint_channels=hint_channels,
# normalize_clip_encoding=normalize_clip_encoding,
)
diffusion = create_gaussian_diffusion(
diffusion_steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
predict_v=predict_v,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
standarization_xt=standarization_xt,
)
return model, diffusion
def create_model(
image_size,
num_channels,
num_res_blocks,
channel_mult="",
learn_sigma=False,
class_cond=False,
use_checkpoint=False,
attention_resolutions="16",
num_heads=1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
dropout=0,
resblock_updown=False,
use_fp16=False,
use_new_attention_order=False,
# denoise_in_channels=3,
denoise_in_channels=-1,
denoise_out_channels=3,
mixed_prediction=False,
create_controlnet=False,
create_dit=False,
create_unet_with_hint=False,
dit_model_arch='DiT-L/2',
hint_channels=3,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
mixing_logit_init=-6,
roll_out=False,
# normalize_clip_encoding=False,
):
if channel_mult == "":
if image_size == 512:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 448:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 320: # ffhq
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 224 and denoise_in_channels == 144: # ffhq
channel_mult = (1, 1, 2, 3, 4, 4)
elif image_size == 224:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
elif image_size == 32: # https://github.com/CompVis/latent-diffusion/blob/a506df5756472e2ebaf9078affdde2c4f1502cd4/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml#L37
channel_mult = (1, 2, 4, 4)
elif image_size == 16: # B,12,16,16. just for baseline check. not good performance.
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
else:
channel_mult = tuple(
int(ch_mult) for ch_mult in channel_mult.split(","))
attention_ds = []
for res in attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
if create_controlnet:
controlledUnetModel = ControlledUnetModel(
image_size=image_size,
in_channels=denoise_in_channels,
model_channels=num_channels,
# out_channels=(3 if not learn_sigma else 6),
out_channels=(denoise_out_channels
if not learn_sigma else denoise_out_channels * 2),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
use_fp16=use_fp16,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
mixed_prediction=mixed_prediction,
# ldm support
use_spatial_transformer=use_spatial_transformer,
transformer_depth=transformer_depth,
context_dim=context_dim,
n_embed=n_embed,
legacy=legacy,
mixing_logit_init=mixing_logit_init,
roll_out=roll_out
)
controlNet = ControlNet(
image_size=image_size,
in_channels=denoise_in_channels,
model_channels=num_channels,
# ! condition channels
hint_channels=hint_channels,
# out_channels=(3 if not learn_sigma else 6),
# out_channels=(denoise_out_channels
# if not learn_sigma else denoise_out_channels * 2),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
# num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
use_fp16=use_fp16,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
roll_out=roll_out
)
# mixed_prediction=mixed_prediction)
return controlledUnetModel, controlNet
elif create_dit:
return DiT_models[dit_model_arch](
input_size=image_size,
num_classes=0,
learn_sigma=learn_sigma,
in_channels=denoise_in_channels,
context_dim=context_dim, # add CLIP text embedding
roll_out=roll_out)
else:
# if create_unet_with_hint:
# unet_cls = UNetModelWithHint
# else:
unet_cls = UNetModel
# st()
return unet_cls(
image_size=image_size,
in_channels=denoise_in_channels,
model_channels=num_channels,
# out_channels=(3 if not learn_sigma else 6),
out_channels=(denoise_out_channels
if not learn_sigma else denoise_out_channels * 2),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
use_fp16=use_fp16,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_new_attention_order=use_new_attention_order,
mixed_prediction=mixed_prediction,
# ldm support
use_spatial_transformer=use_spatial_transformer,
transformer_depth=transformer_depth,
context_dim=context_dim,
n_embed=n_embed,
legacy=legacy,
mixing_logit_init=mixing_logit_init,
roll_out=roll_out,
hint_channels=hint_channels,
# normalize_clip_encoding=normalize_clip_encoding,
)
def create_classifier_and_diffusion(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
learn_sigma,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
):
classifier = create_classifier(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return classifier, diffusion
def create_classifier(
image_size,
classifier_use_fp16,
classifier_width,
classifier_depth,
classifier_attention_resolutions,
classifier_use_scale_shift_norm,
classifier_resblock_updown,
classifier_pool,
):
if image_size == 512:
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
elif image_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif image_size == 128:
channel_mult = (1, 1, 2, 3, 4)
elif image_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported image size: {image_size}")
attention_ds = []
for res in classifier_attention_resolutions.split(","):
attention_ds.append(image_size // int(res))
return EncoderUNetModel(
image_size=image_size,
in_channels=3,
model_channels=classifier_width,
out_channels=1000,
num_res_blocks=classifier_depth,
attention_resolutions=tuple(attention_ds),
channel_mult=channel_mult,
use_fp16=classifier_use_fp16,
num_head_channels=64,
use_scale_shift_norm=classifier_use_scale_shift_norm,
resblock_updown=classifier_resblock_updown,
pool=classifier_pool,
)
def sr_model_and_diffusion_defaults():
res = model_and_diffusion_defaults()
res["large_size"] = 256
res["small_size"] = 64
arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
for k in res.copy().keys():
if k not in arg_names:
del res[k]
return res
def sr_create_model_and_diffusion(
large_size,
small_size,
class_cond,
learn_sigma,
num_channels,
num_res_blocks,
num_heads,
num_head_channels,
num_heads_upsample,
attention_resolutions,
dropout,
diffusion_steps,
noise_schedule,
timestep_respacing,
use_kl,
predict_xstart,
rescale_timesteps,
rescale_learned_sigmas,
use_checkpoint,
use_scale_shift_norm,
resblock_updown,
use_fp16,
):
model = sr_create_model(
large_size,
small_size,
num_channels,
num_res_blocks,
learn_sigma=learn_sigma,
class_cond=class_cond,
use_checkpoint=use_checkpoint,
attention_resolutions=attention_resolutions,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
dropout=dropout,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
)
diffusion = create_gaussian_diffusion(
steps=diffusion_steps,
learn_sigma=learn_sigma,
noise_schedule=noise_schedule,
use_kl=use_kl,
predict_xstart=predict_xstart,
rescale_timesteps=rescale_timesteps,
rescale_learned_sigmas=rescale_learned_sigmas,
timestep_respacing=timestep_respacing,
)
return model, diffusion
def sr_create_model(
large_size,
small_size,
num_channels,
num_res_blocks,
learn_sigma,
class_cond,
use_checkpoint,
attention_resolutions,
num_heads,
num_head_channels,
num_heads_upsample,
use_scale_shift_norm,
dropout,
resblock_updown,
use_fp16,
):
_ = small_size # hack to prevent unused variable
if large_size == 512:
channel_mult = (1, 1, 2, 2, 4, 4)
elif large_size == 256:
channel_mult = (1, 1, 2, 2, 4, 4)
elif large_size == 64:
channel_mult = (1, 2, 3, 4)
else:
raise ValueError(f"unsupported large size: {large_size}")
attention_ds = []
for res in attention_resolutions.split(","):
attention_ds.append(large_size // int(res))
return SuperResModel(
image_size=large_size,
in_channels=3,
model_channels=num_channels,
out_channels=(3 if not learn_sigma else 6),
num_res_blocks=num_res_blocks,
attention_resolutions=tuple(attention_ds),
dropout=dropout,
channel_mult=channel_mult,
num_classes=(NUM_CLASSES if class_cond else None),
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=num_head_channels,
num_heads_upsample=num_heads_upsample,
use_scale_shift_norm=use_scale_shift_norm,
resblock_updown=resblock_updown,
use_fp16=use_fp16,
)
def create_gaussian_diffusion(
*,
diffusion_steps=1000,
learn_sigma=False,
sigma_small=False,
noise_schedule="linear",
use_kl=False,
predict_xstart=False,
predict_v=False,
rescale_timesteps=False,
rescale_learned_sigmas=False,
timestep_respacing="",
standarization_xt=False,
):
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
if use_kl:
loss_type = gd.LossType.RESCALED_KL
elif rescale_learned_sigmas:
loss_type = gd.LossType.RESCALED_MSE
else:
loss_type = gd.LossType.MSE # * used here.
if not timestep_respacing:
timestep_respacing = [diffusion_steps]
if predict_xstart:
model_mean_type = gd.ModelMeanType.START_X
elif predict_v:
model_mean_type = gd.ModelMeanType.V
else:
model_mean_type = gd.ModelMeanType.EPSILON
# model_mean_type=(
# gd.ModelMeanType.EPSILON if not predict_xstart else
# gd.ModelMeanType.START_X # * used gd.ModelMeanType.EPSILON
# ),
return SpacedDiffusion(
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
betas=betas,
model_mean_type=model_mean_type,
# (
# gd.ModelMeanType.EPSILON if not predict_xstart else
# gd.ModelMeanType.START_X # * used gd.ModelMeanType.EPSILON
# ),
model_var_type=((
gd.ModelVarType.FIXED_LARGE # * used here
if not sigma_small else gd.ModelVarType.FIXED_SMALL)
if not learn_sigma else gd.ModelVarType.LEARNED_RANGE),
loss_type=loss_type,
rescale_timesteps=rescale_timesteps,
standarization_xt=standarization_xt,
)
def add_dict_to_argparser(parser, default_dict):
for k, v in default_dict.items():
v_type = type(v)
if v is None:
v_type = str
elif isinstance(v, bool):
v_type = str2bool
parser.add_argument(f"--{k}", default=v, type=v_type)
def args_to_dict(args, keys):
return {k: getattr(args, k) for k in keys}
def str2bool(v):
"""
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
"""
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("boolean value expected")