File size: 21,637 Bytes
87c126b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import argparse
import inspect

from pdb import set_trace as st

from cldm.cldm import ControlledUnetModel, ControlNet

from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps
# from .unet_old import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint
from .unet import SuperResModel, UNetModel, EncoderUNetModel # , UNetModelWithHint
import torch as th
from dit.dit_models_xformers import DiT_models
if th.cuda.is_available():
    from xformers.triton import FusedLayerNorm as LayerNorm

NUM_CLASSES = 1000


def diffusion_defaults():
    """
    Defaults for image and classifier training.
    """
    return dict(
        learn_sigma=False,
        diffusion_steps=1000,
        noise_schedule="linear",
        standarization_xt=False,
        timestep_respacing="",
        use_kl=False,
        predict_xstart=False,
        predict_v=False,
        rescale_timesteps=False,
        rescale_learned_sigmas=False,
        mixed_prediction=False,  # ! to assign later
    )


def classifier_defaults():
    """
    Defaults for classifier models.
    """
    return dict(
        image_size=64,
        classifier_use_fp16=False,
        classifier_width=128,
        classifier_depth=2,
        classifier_attention_resolutions="32,16,8",  # 16
        classifier_use_scale_shift_norm=True,  # False
        classifier_resblock_updown=True,  # False
        classifier_pool="attention",
    )


def control_net_defaults():
    res = dict(
        only_mid_control=False,  # TODO
        control_key='img',
        normalize_clip_encoding=False,  # zero-shot text inference
        scale_clip_encoding=1.0,
        cfg_dropout_prob=0.0,  # dropout condition for CFG training
        # cond_key='caption',
    )
    return res


def continuous_diffusion_defaults():
    # NVlabs/LSGM/train_vada.py
    res = dict(
        sde_time_eps=1e-2,
        sde_beta_start=0.1,
        sde_beta_end=20.0,
        sde_sde_type='vpsde',
        sde_sigma2_0=0.0,  # ?
        iw_sample_p='drop_sigma2t_iw',
        iw_sample_q='ll_iw',
        iw_subvp_like_vp_sde=False,
        train_vae=True,
        pred_type='eps',  # [x0, eps]
        # joint_train=False,
        p_rendering_loss=False,
        unfix_logit=False,
        loss_type='eps',
        loss_weight='simple',  # snr snr_sqrt sigmoid_snr
        # train_vae_denoise_rendering=False,
        diffusion_ce_anneal=True,
        enable_mixing_normal=True,
    )

    return res


def model_and_diffusion_defaults():
    """
    Defaults for image training.
    """
    res = dict(
        # image_size=64,
        diffusion_input_size=224,
        num_channels=128,
        num_res_blocks=2,
        num_heads=4,
        num_heads_upsample=-1,
        num_head_channels=-1,
        attention_resolutions="16,8",
        channel_mult="",
        dropout=0.0,
        class_cond=False,
        use_checkpoint=False,
        use_scale_shift_norm=True,
        resblock_updown=False,
        use_fp16=False,
        use_new_attention_order=False,
        denoise_in_channels=3,
        denoise_out_channels=3,
        # ! controlnet args
        create_controlnet=False,
        create_dit=False,
        create_unet_with_hint=False,
        dit_model_arch='DiT-L/2',
        # ! ldm unet support
        use_spatial_transformer=False,  # custom transformer support
        transformer_depth=1,  # custom transformer support
        context_dim=-1,  # custom transformer support
        roll_out=False,  # whether concat in batch, not channel
        n_embed=
        None,  # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        mixing_logit_init=-6,
        hint_channels=3,
        # unconditional_guidance_scale=1.0,
        # normalize_clip_encoding=False, # for zero-shot conditioning
    )
    res.update(diffusion_defaults())
    # res.update(continuous_diffusion_defaults())
    return res


def classifier_and_diffusion_defaults():
    res = classifier_defaults()
    res.update(diffusion_defaults())
    return res


def create_model_and_diffusion(
    # image_size,
    diffusion_input_size,
    class_cond,
    learn_sigma,
    num_channels,
    num_res_blocks,
    channel_mult,
    num_heads,
    num_head_channels,
    num_heads_upsample,
    attention_resolutions,
    dropout,
    diffusion_steps,
    noise_schedule,
    timestep_respacing,
    use_kl,
    predict_xstart,
    predict_v,
    rescale_timesteps,
    rescale_learned_sigmas,
    use_checkpoint,
    use_scale_shift_norm,
    resblock_updown,
    use_fp16,
    use_new_attention_order,
    denoise_in_channels,
    denoise_out_channels,
    standarization_xt,
    mixed_prediction,
    # controlnet
    create_controlnet,
    # only_mid_control,
    # control_key,
    use_spatial_transformer,
    transformer_depth,
    context_dim,
    n_embed,
    legacy,
    mixing_logit_init,
    create_dit,
    create_unet_with_hint,
    dit_model_arch,
    roll_out,
    hint_channels,
    # unconditional_guidance_scale,
    # normalize_clip_encoding,
):
    model = create_model(
        diffusion_input_size,
        num_channels,
        num_res_blocks,
        channel_mult=channel_mult,
        learn_sigma=learn_sigma,
        class_cond=class_cond,
        use_checkpoint=use_checkpoint,
        attention_resolutions=attention_resolutions,
        num_heads=num_heads,
        num_head_channels=num_head_channels,
        num_heads_upsample=num_heads_upsample,
        use_scale_shift_norm=use_scale_shift_norm,
        dropout=dropout,
        resblock_updown=resblock_updown,
        use_fp16=use_fp16,
        use_new_attention_order=use_new_attention_order,
        denoise_in_channels=denoise_in_channels,
        denoise_out_channels=denoise_out_channels,
        mixed_prediction=mixed_prediction,
        create_controlnet=create_controlnet,
        # only_mid_control=only_mid_control,
        # control_key=control_key,
        use_spatial_transformer=use_spatial_transformer,
        transformer_depth=transformer_depth,
        context_dim=context_dim,
        n_embed=n_embed,
        legacy=legacy,
        mixing_logit_init=mixing_logit_init,
        create_dit=create_dit,
        create_unet_with_hint=create_unet_with_hint,
        dit_model_arch=dit_model_arch,
        roll_out=roll_out,
        hint_channels=hint_channels,
        # normalize_clip_encoding=normalize_clip_encoding,
    )
    diffusion = create_gaussian_diffusion(
        diffusion_steps=diffusion_steps,
        learn_sigma=learn_sigma,
        noise_schedule=noise_schedule,
        use_kl=use_kl,
        predict_xstart=predict_xstart,
        predict_v=predict_v,
        rescale_timesteps=rescale_timesteps,
        rescale_learned_sigmas=rescale_learned_sigmas,
        timestep_respacing=timestep_respacing,
        standarization_xt=standarization_xt,
    )
    return model, diffusion


def create_model(
    image_size,
    num_channels,
    num_res_blocks,
    channel_mult="",
    learn_sigma=False,
    class_cond=False,
    use_checkpoint=False,
    attention_resolutions="16",
    num_heads=1,
    num_head_channels=-1,
    num_heads_upsample=-1,
    use_scale_shift_norm=False,
    dropout=0,
    resblock_updown=False,
    use_fp16=False,
    use_new_attention_order=False,
    # denoise_in_channels=3,
    denoise_in_channels=-1,
    denoise_out_channels=3,
    mixed_prediction=False,
    create_controlnet=False,
    create_dit=False,
    create_unet_with_hint=False,
    dit_model_arch='DiT-L/2',
    hint_channels=3,
    use_spatial_transformer=False,  # custom transformer support
    transformer_depth=1,  # custom transformer support
    context_dim=None,  # custom transformer support
    n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
    legacy=True,
    mixing_logit_init=-6,
    roll_out=False,
    # normalize_clip_encoding=False,
):
    if channel_mult == "":
        if image_size == 512:
            channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
        elif image_size == 448:
            channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
        elif image_size == 320:  # ffhq
            channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
        elif image_size == 224 and denoise_in_channels == 144:  # ffhq
            channel_mult = (1, 1, 2, 3, 4, 4)
        elif image_size == 224:
            channel_mult = (1, 1, 2, 2, 4, 4)
        elif image_size == 256:
            channel_mult = (1, 1, 2, 2, 4, 4)
        elif image_size == 128:
            channel_mult = (1, 1, 2, 3, 4)
        elif image_size == 64:
            channel_mult = (1, 2, 3, 4)

        elif image_size == 32:  # https://github.com/CompVis/latent-diffusion/blob/a506df5756472e2ebaf9078affdde2c4f1502cd4/configs/latent-diffusion/lsun_churches-ldm-kl-8.yaml#L37
            channel_mult = (1, 2, 4, 4)

        elif image_size == 16:  # B,12,16,16. just for baseline check. not good performance.
            channel_mult = (1, 2, 3, 4)
        else:
            raise ValueError(f"unsupported image size: {image_size}")
    else:
        channel_mult = tuple(
            int(ch_mult) for ch_mult in channel_mult.split(","))

    attention_ds = []
    for res in attention_resolutions.split(","):
        attention_ds.append(image_size // int(res))

    if create_controlnet:

        controlledUnetModel = ControlledUnetModel(
            image_size=image_size,
            in_channels=denoise_in_channels,
            model_channels=num_channels,
            # out_channels=(3 if not learn_sigma else 6),
            out_channels=(denoise_out_channels
                          if not learn_sigma else denoise_out_channels * 2),
            num_res_blocks=num_res_blocks,
            attention_resolutions=tuple(attention_ds),
            dropout=dropout,
            channel_mult=channel_mult,
            num_classes=(NUM_CLASSES if class_cond else None),
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
            use_new_attention_order=use_new_attention_order,
            mixed_prediction=mixed_prediction,
            # ldm support
            use_spatial_transformer=use_spatial_transformer,
            transformer_depth=transformer_depth,
            context_dim=context_dim,
            n_embed=n_embed,
            legacy=legacy,
            mixing_logit_init=mixing_logit_init,
            roll_out=roll_out
            )

        controlNet = ControlNet(
            image_size=image_size,
            in_channels=denoise_in_channels,
            model_channels=num_channels,
            # ! condition channels
            hint_channels=hint_channels,
            # out_channels=(3 if not learn_sigma else 6),
            # out_channels=(denoise_out_channels
            #             if not learn_sigma else denoise_out_channels * 2),
            num_res_blocks=num_res_blocks,
            attention_resolutions=tuple(attention_ds),
            dropout=dropout,
            channel_mult=channel_mult,
            # num_classes=(NUM_CLASSES if class_cond else None),
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
            use_new_attention_order=use_new_attention_order,
            roll_out=roll_out
        )
        # mixed_prediction=mixed_prediction)

        return controlledUnetModel, controlNet

    elif create_dit:
        return DiT_models[dit_model_arch](
            input_size=image_size,
            num_classes=0,
            learn_sigma=learn_sigma,
            in_channels=denoise_in_channels,
            context_dim=context_dim,  # add CLIP text embedding
            roll_out=roll_out)
    else:

        # if create_unet_with_hint:
        #     unet_cls = UNetModelWithHint
        # else:
        unet_cls = UNetModel

        # st()
        return unet_cls(
            image_size=image_size,
            in_channels=denoise_in_channels,
            model_channels=num_channels,
            # out_channels=(3 if not learn_sigma else 6),
            out_channels=(denoise_out_channels
                          if not learn_sigma else denoise_out_channels * 2),
            num_res_blocks=num_res_blocks,
            attention_resolutions=tuple(attention_ds),
            dropout=dropout,
            channel_mult=channel_mult,
            num_classes=(NUM_CLASSES if class_cond else None),
            use_checkpoint=use_checkpoint,
            use_fp16=use_fp16,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            num_heads_upsample=num_heads_upsample,
            use_scale_shift_norm=use_scale_shift_norm,
            resblock_updown=resblock_updown,
            use_new_attention_order=use_new_attention_order,
            mixed_prediction=mixed_prediction,
            # ldm support
            use_spatial_transformer=use_spatial_transformer,
            transformer_depth=transformer_depth,
            context_dim=context_dim,
            n_embed=n_embed,
            legacy=legacy,
            mixing_logit_init=mixing_logit_init,
            roll_out=roll_out,
            hint_channels=hint_channels,
            # normalize_clip_encoding=normalize_clip_encoding,
        )


def create_classifier_and_diffusion(
    image_size,
    classifier_use_fp16,
    classifier_width,
    classifier_depth,
    classifier_attention_resolutions,
    classifier_use_scale_shift_norm,
    classifier_resblock_updown,
    classifier_pool,
    learn_sigma,
    diffusion_steps,
    noise_schedule,
    timestep_respacing,
    use_kl,
    predict_xstart,
    rescale_timesteps,
    rescale_learned_sigmas,
):
    classifier = create_classifier(
        image_size,
        classifier_use_fp16,
        classifier_width,
        classifier_depth,
        classifier_attention_resolutions,
        classifier_use_scale_shift_norm,
        classifier_resblock_updown,
        classifier_pool,
    )
    diffusion = create_gaussian_diffusion(
        steps=diffusion_steps,
        learn_sigma=learn_sigma,
        noise_schedule=noise_schedule,
        use_kl=use_kl,
        predict_xstart=predict_xstart,
        rescale_timesteps=rescale_timesteps,
        rescale_learned_sigmas=rescale_learned_sigmas,
        timestep_respacing=timestep_respacing,
    )
    return classifier, diffusion


def create_classifier(
    image_size,
    classifier_use_fp16,
    classifier_width,
    classifier_depth,
    classifier_attention_resolutions,
    classifier_use_scale_shift_norm,
    classifier_resblock_updown,
    classifier_pool,
):
    if image_size == 512:
        channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
    elif image_size == 256:
        channel_mult = (1, 1, 2, 2, 4, 4)
    elif image_size == 128:
        channel_mult = (1, 1, 2, 3, 4)
    elif image_size == 64:
        channel_mult = (1, 2, 3, 4)
    else:
        raise ValueError(f"unsupported image size: {image_size}")

    attention_ds = []
    for res in classifier_attention_resolutions.split(","):
        attention_ds.append(image_size // int(res))

    return EncoderUNetModel(
        image_size=image_size,
        in_channels=3,
        model_channels=classifier_width,
        out_channels=1000,
        num_res_blocks=classifier_depth,
        attention_resolutions=tuple(attention_ds),
        channel_mult=channel_mult,
        use_fp16=classifier_use_fp16,
        num_head_channels=64,
        use_scale_shift_norm=classifier_use_scale_shift_norm,
        resblock_updown=classifier_resblock_updown,
        pool=classifier_pool,
    )


def sr_model_and_diffusion_defaults():
    res = model_and_diffusion_defaults()
    res["large_size"] = 256
    res["small_size"] = 64
    arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
    for k in res.copy().keys():
        if k not in arg_names:
            del res[k]
    return res


def sr_create_model_and_diffusion(
    large_size,
    small_size,
    class_cond,
    learn_sigma,
    num_channels,
    num_res_blocks,
    num_heads,
    num_head_channels,
    num_heads_upsample,
    attention_resolutions,
    dropout,
    diffusion_steps,
    noise_schedule,
    timestep_respacing,
    use_kl,
    predict_xstart,
    rescale_timesteps,
    rescale_learned_sigmas,
    use_checkpoint,
    use_scale_shift_norm,
    resblock_updown,
    use_fp16,
):
    model = sr_create_model(
        large_size,
        small_size,
        num_channels,
        num_res_blocks,
        learn_sigma=learn_sigma,
        class_cond=class_cond,
        use_checkpoint=use_checkpoint,
        attention_resolutions=attention_resolutions,
        num_heads=num_heads,
        num_head_channels=num_head_channels,
        num_heads_upsample=num_heads_upsample,
        use_scale_shift_norm=use_scale_shift_norm,
        dropout=dropout,
        resblock_updown=resblock_updown,
        use_fp16=use_fp16,
    )
    diffusion = create_gaussian_diffusion(
        steps=diffusion_steps,
        learn_sigma=learn_sigma,
        noise_schedule=noise_schedule,
        use_kl=use_kl,
        predict_xstart=predict_xstart,
        rescale_timesteps=rescale_timesteps,
        rescale_learned_sigmas=rescale_learned_sigmas,
        timestep_respacing=timestep_respacing,
    )
    return model, diffusion


def sr_create_model(
    large_size,
    small_size,
    num_channels,
    num_res_blocks,
    learn_sigma,
    class_cond,
    use_checkpoint,
    attention_resolutions,
    num_heads,
    num_head_channels,
    num_heads_upsample,
    use_scale_shift_norm,
    dropout,
    resblock_updown,
    use_fp16,
):
    _ = small_size  # hack to prevent unused variable

    if large_size == 512:
        channel_mult = (1, 1, 2, 2, 4, 4)
    elif large_size == 256:
        channel_mult = (1, 1, 2, 2, 4, 4)
    elif large_size == 64:
        channel_mult = (1, 2, 3, 4)
    else:
        raise ValueError(f"unsupported large size: {large_size}")

    attention_ds = []
    for res in attention_resolutions.split(","):
        attention_ds.append(large_size // int(res))

    return SuperResModel(
        image_size=large_size,
        in_channels=3,
        model_channels=num_channels,
        out_channels=(3 if not learn_sigma else 6),
        num_res_blocks=num_res_blocks,
        attention_resolutions=tuple(attention_ds),
        dropout=dropout,
        channel_mult=channel_mult,
        num_classes=(NUM_CLASSES if class_cond else None),
        use_checkpoint=use_checkpoint,
        num_heads=num_heads,
        num_head_channels=num_head_channels,
        num_heads_upsample=num_heads_upsample,
        use_scale_shift_norm=use_scale_shift_norm,
        resblock_updown=resblock_updown,
        use_fp16=use_fp16,
    )


def create_gaussian_diffusion(
    *,
    diffusion_steps=1000,
    learn_sigma=False,
    sigma_small=False,
    noise_schedule="linear",
    use_kl=False,
    predict_xstart=False,
    predict_v=False,
    rescale_timesteps=False,
    rescale_learned_sigmas=False,
    timestep_respacing="",
    standarization_xt=False,
):
    betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
    if use_kl:
        loss_type = gd.LossType.RESCALED_KL
    elif rescale_learned_sigmas:
        loss_type = gd.LossType.RESCALED_MSE
    else:
        loss_type = gd.LossType.MSE  # * used here.
    if not timestep_respacing:
        timestep_respacing = [diffusion_steps]

    if predict_xstart:
        model_mean_type = gd.ModelMeanType.START_X
    elif predict_v:
        model_mean_type = gd.ModelMeanType.V
    else:
        model_mean_type = gd.ModelMeanType.EPSILON

        # model_mean_type=(
        #     gd.ModelMeanType.EPSILON if not predict_xstart else
        #     gd.ModelMeanType.START_X  # * used gd.ModelMeanType.EPSILON
        # ),

    return SpacedDiffusion(
        use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
        betas=betas,
        model_mean_type=model_mean_type,
        # (
        #     gd.ModelMeanType.EPSILON if not predict_xstart else
        #     gd.ModelMeanType.START_X  # * used gd.ModelMeanType.EPSILON
        # ),
        model_var_type=((
            gd.ModelVarType.FIXED_LARGE  # * used here
            if not sigma_small else gd.ModelVarType.FIXED_SMALL)
                        if not learn_sigma else gd.ModelVarType.LEARNED_RANGE),
        loss_type=loss_type,
        rescale_timesteps=rescale_timesteps,
        standarization_xt=standarization_xt,
    )


def add_dict_to_argparser(parser, default_dict):
    for k, v in default_dict.items():
        v_type = type(v)
        if v is None:
            v_type = str
        elif isinstance(v, bool):
            v_type = str2bool
        parser.add_argument(f"--{k}", default=v, type=v_type)


def args_to_dict(args, keys):
    return {k: getattr(args, k) for k in keys}


def str2bool(v):
    """
    https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
    """
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("boolean value expected")