metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: bert-base-cased
model-index:
- name: bert-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9327495042961005
name: Precision
- type: recall
value: 0.9500168293503871
name: Recall
- type: f1
value: 0.9413039853259965
name: F1
- type: accuracy
value: 0.9860775887443339
name: Accuracy
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0634
- Precision: 0.9327
- Recall: 0.9500
- F1: 0.9413
- Accuracy: 0.9861
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0876 | 1.0 | 1756 | 0.0692 | 0.9127 | 0.9355 | 0.9240 | 0.9819 |
0.0316 | 2.0 | 3512 | 0.0651 | 0.9284 | 0.9490 | 0.9386 | 0.9850 |
0.0215 | 3.0 | 5268 | 0.0634 | 0.9327 | 0.9500 | 0.9413 | 0.9861 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1