bert-finetuned-ner / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
004d1a4
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: bert-base-cased
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          args: conll2003
        metrics:
          - type: precision
            value: 0.9327495042961005
            name: Precision
          - type: recall
            value: 0.9500168293503871
            name: Recall
          - type: f1
            value: 0.9413039853259965
            name: F1
          - type: accuracy
            value: 0.9860775887443339
            name: Accuracy

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0634
  • Precision: 0.9327
  • Recall: 0.9500
  • F1: 0.9413
  • Accuracy: 0.9861

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0876 1.0 1756 0.0692 0.9127 0.9355 0.9240 0.9819
0.0316 2.0 3512 0.0651 0.9284 0.9490 0.9386 0.9850
0.0215 3.0 5268 0.0634 0.9327 0.9500 0.9413 0.9861

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1