ymoslem's picture
Update README.md
9343179 verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - bleu
  - wer
  - chrf
model-index:
  - name: Whisper Base GA-EN Speech Translation
    results: []
datasets:
  - ymoslem/IWSLT2023-GA-EN
language:
  - ga
  - en
library_name: transformers

Whisper Base GA-EN Speech Translation

This model is a fine-tuned version of openai/whisper-base on an unknown dataset. The best model based on ChrF (this version) is at checkpoint 1000, epoch 3.72, and it achieves the following results on the evaluation set:

  • Loss: 2.2482
  • Bleu: 20.8
  • Chrf: 35.56
  • Wer: 84.0162

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 0.03
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Chrf Wer
1.5709 0.37 100 2.1099 5.49 22.56 144.5745
0.9426 0.74 200 2.0613 10.65 26.37 130.0315
0.3912 1.12 300 2.1207 13.43 29.77 103.9172
0.3943 1.49 400 2.1177 16.64 32.27 97.3435
0.3605 1.86 500 2.1689 18.41 32.69 87.1679
0.1164 2.23 600 2.1506 20.49 33.74 82.3953
0.1371 2.6 700 2.1397 19.86 34.97 84.9167
0.1263 2.97 800 2.1849 21.11 34.92 81.3147
0.049 3.35 900 2.2424 21.24 35.22 83.6110
0.0462 3.72 1000 2.2482 20.8 35.56 84.0162

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2