metadata
language:
- vi
base_model: ylacombe/w2v-bert-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_16_0
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: wav2vec2-common_voice-vi-demo
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - VI
type: common_voice_16_0
config: vi
split: test
args: 'Config: vi, Training split: train+validation, Eval split: test'
metrics:
- name: Wer
type: wer
value: 1
wav2vec2-common_voice-vi-demo
This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - VI dataset. It achieves the following results on the evaluation set:
- Loss: 3.3958
- Wer: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 2.26 | 200 | 3.5924 | 1.0 |
No log | 4.52 | 400 | 3.4946 | 1.0 |
5.7152 | 6.78 | 600 | 3.4630 | 1.0 |
5.7152 | 9.04 | 800 | 3.4525 | 1.0 |
3.5048 | 11.3 | 1000 | 3.4329 | 1.0 |
3.5048 | 13.56 | 1200 | 3.4074 | 1.0 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.15.0