Edit model card

w2v-bert-2.0-turkish-colab-CV6.1

This model is a fine-tuned version of ylacombe/w2v-bert-2.0 on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1978
  • Wer: 0.1838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.4016 0.92 100 2.4338 1.0428
0.5644 1.83 200 0.2224 0.1936
0.1692 2.75 300 0.1978 0.1838

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
606M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ylacombe/w2v-bert-2.0-turkish-colab-CV6.1

Finetuned
(16)
this model

Evaluation results