|
import os |
|
import re |
|
import torch |
|
from typing import Union |
|
|
|
from modules import shared, devices, sd_models, errors, scripts, sd_hijack, hashes |
|
|
|
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} |
|
|
|
re_digits = re.compile(r"\d+") |
|
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") |
|
re_compiled = {} |
|
|
|
suffix_conversion = { |
|
"attentions": {}, |
|
"resnets": { |
|
"conv1": "in_layers_2", |
|
"conv2": "out_layers_3", |
|
"time_emb_proj": "emb_layers_1", |
|
"conv_shortcut": "skip_connection", |
|
} |
|
} |
|
|
|
|
|
def convert_diffusers_name_to_compvis(key, is_sd2): |
|
def match(match_list, regex_text): |
|
regex = re_compiled.get(regex_text) |
|
if regex is None: |
|
regex = re.compile(regex_text) |
|
re_compiled[regex_text] = regex |
|
|
|
r = re.match(regex, key) |
|
if not r: |
|
return False |
|
|
|
match_list.clear() |
|
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) |
|
return True |
|
|
|
m = [] |
|
|
|
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): |
|
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) |
|
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" |
|
|
|
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"): |
|
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2]) |
|
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}" |
|
|
|
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): |
|
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) |
|
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" |
|
|
|
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"): |
|
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op" |
|
|
|
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"): |
|
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv" |
|
|
|
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"): |
|
if is_sd2: |
|
if 'mlp_fc1' in m[1]: |
|
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" |
|
elif 'mlp_fc2' in m[1]: |
|
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" |
|
else: |
|
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" |
|
|
|
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" |
|
|
|
return key |
|
|
|
|
|
class LoraOnDisk: |
|
def __init__(self, name, filename): |
|
self.name = name |
|
self.filename = filename |
|
self.metadata = {} |
|
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors" |
|
|
|
if self.is_safetensors: |
|
try: |
|
self.metadata = sd_models.read_metadata_from_safetensors(filename) |
|
except Exception as e: |
|
errors.display(e, f"reading lora {filename}") |
|
|
|
if self.metadata: |
|
m = {} |
|
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): |
|
m[k] = v |
|
|
|
self.metadata = m |
|
|
|
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) |
|
self.alias = self.metadata.get('ss_output_name', self.name) |
|
|
|
self.hash = None |
|
self.shorthash = None |
|
self.set_hash( |
|
self.metadata.get('sshs_model_hash') or |
|
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or |
|
'' |
|
) |
|
|
|
def set_hash(self, v): |
|
self.hash = v |
|
self.shorthash = self.hash[0:12] |
|
|
|
if self.shorthash: |
|
available_lora_hash_lookup[self.shorthash] = self |
|
|
|
def read_hash(self): |
|
if not self.hash: |
|
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '') |
|
|
|
def get_alias(self): |
|
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in forbidden_lora_aliases: |
|
return self.name |
|
else: |
|
return self.alias |
|
|
|
|
|
class LoraModule: |
|
def __init__(self, name, lora_on_disk: LoraOnDisk): |
|
self.name = name |
|
self.lora_on_disk = lora_on_disk |
|
self.multiplier = 1.0 |
|
self.modules = {} |
|
self.mtime = None |
|
|
|
self.mentioned_name = None |
|
"""the text that was used to add lora to prompt - can be either name or an alias""" |
|
|
|
|
|
class LoraUpDownModule: |
|
def __init__(self): |
|
self.up = None |
|
self.down = None |
|
self.alpha = None |
|
|
|
|
|
def assign_lora_names_to_compvis_modules(sd_model): |
|
lora_layer_mapping = {} |
|
|
|
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): |
|
lora_name = name.replace(".", "_") |
|
lora_layer_mapping[lora_name] = module |
|
module.lora_layer_name = lora_name |
|
|
|
for name, module in shared.sd_model.model.named_modules(): |
|
lora_name = name.replace(".", "_") |
|
lora_layer_mapping[lora_name] = module |
|
module.lora_layer_name = lora_name |
|
|
|
sd_model.lora_layer_mapping = lora_layer_mapping |
|
|
|
|
|
def load_lora(name, lora_on_disk): |
|
lora = LoraModule(name, lora_on_disk) |
|
lora.mtime = os.path.getmtime(lora_on_disk.filename) |
|
|
|
sd = sd_models.read_state_dict(lora_on_disk.filename) |
|
|
|
|
|
if not hasattr(shared.sd_model, 'lora_layer_mapping'): |
|
assign_lora_names_to_compvis_modules(shared.sd_model) |
|
|
|
keys_failed_to_match = {} |
|
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping |
|
|
|
for key_diffusers, weight in sd.items(): |
|
key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1) |
|
key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2) |
|
|
|
sd_module = shared.sd_model.lora_layer_mapping.get(key, None) |
|
|
|
if sd_module is None: |
|
m = re_x_proj.match(key) |
|
if m: |
|
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None) |
|
|
|
if sd_module is None: |
|
keys_failed_to_match[key_diffusers] = key |
|
continue |
|
|
|
lora_module = lora.modules.get(key, None) |
|
if lora_module is None: |
|
lora_module = LoraUpDownModule() |
|
lora.modules[key] = lora_module |
|
|
|
if lora_key == "alpha": |
|
lora_module.alpha = weight.item() |
|
continue |
|
|
|
if type(sd_module) == torch.nn.Linear: |
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) |
|
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear: |
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) |
|
elif type(sd_module) == torch.nn.MultiheadAttention: |
|
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) |
|
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1): |
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) |
|
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3): |
|
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False) |
|
else: |
|
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}') |
|
continue |
|
raise AssertionError(f"Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}") |
|
|
|
with torch.no_grad(): |
|
module.weight.copy_(weight) |
|
|
|
module.to(device=devices.cpu, dtype=devices.dtype) |
|
|
|
if lora_key == "lora_up.weight": |
|
lora_module.up = module |
|
elif lora_key == "lora_down.weight": |
|
lora_module.down = module |
|
else: |
|
raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha") |
|
|
|
if keys_failed_to_match: |
|
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}") |
|
|
|
return lora |
|
|
|
|
|
def load_loras(names, multipliers=None): |
|
already_loaded = {} |
|
|
|
for lora in loaded_loras: |
|
if lora.name in names: |
|
already_loaded[lora.name] = lora |
|
|
|
loaded_loras.clear() |
|
|
|
loras_on_disk = [available_lora_aliases.get(name, None) for name in names] |
|
if any(x is None for x in loras_on_disk): |
|
list_available_loras() |
|
|
|
loras_on_disk = [available_lora_aliases.get(name, None) for name in names] |
|
|
|
failed_to_load_loras = [] |
|
|
|
for i, name in enumerate(names): |
|
lora = already_loaded.get(name, None) |
|
|
|
lora_on_disk = loras_on_disk[i] |
|
|
|
if lora_on_disk is not None: |
|
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: |
|
try: |
|
lora = load_lora(name, lora_on_disk) |
|
except Exception as e: |
|
errors.display(e, f"loading Lora {lora_on_disk.filename}") |
|
continue |
|
|
|
lora.mentioned_name = name |
|
|
|
lora_on_disk.read_hash() |
|
|
|
if lora is None: |
|
failed_to_load_loras.append(name) |
|
print(f"Couldn't find Lora with name {name}") |
|
continue |
|
|
|
lora.multiplier = multipliers[i] if multipliers else 1.0 |
|
loaded_loras.append(lora) |
|
|
|
if failed_to_load_loras: |
|
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras)) |
|
|
|
|
|
def lora_calc_updown(lora, module, target): |
|
with torch.no_grad(): |
|
up = module.up.weight.to(target.device, dtype=target.dtype) |
|
down = module.down.weight.to(target.device, dtype=target.dtype) |
|
|
|
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): |
|
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3): |
|
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3) |
|
else: |
|
updown = up @ down |
|
|
|
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) |
|
|
|
return updown |
|
|
|
|
|
def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): |
|
weights_backup = getattr(self, "lora_weights_backup", None) |
|
|
|
if weights_backup is None: |
|
return |
|
|
|
if isinstance(self, torch.nn.MultiheadAttention): |
|
self.in_proj_weight.copy_(weights_backup[0]) |
|
self.out_proj.weight.copy_(weights_backup[1]) |
|
else: |
|
self.weight.copy_(weights_backup) |
|
|
|
|
|
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): |
|
""" |
|
Applies the currently selected set of Loras to the weights of torch layer self. |
|
If weights already have this particular set of loras applied, does nothing. |
|
If not, restores orginal weights from backup and alters weights according to loras. |
|
""" |
|
|
|
lora_layer_name = getattr(self, 'lora_layer_name', None) |
|
if lora_layer_name is None: |
|
return |
|
|
|
current_names = getattr(self, "lora_current_names", ()) |
|
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras) |
|
|
|
weights_backup = getattr(self, "lora_weights_backup", None) |
|
if weights_backup is None: |
|
if isinstance(self, torch.nn.MultiheadAttention): |
|
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) |
|
else: |
|
weights_backup = self.weight.to(devices.cpu, copy=True) |
|
|
|
self.lora_weights_backup = weights_backup |
|
|
|
if current_names != wanted_names: |
|
lora_restore_weights_from_backup(self) |
|
|
|
for lora in loaded_loras: |
|
module = lora.modules.get(lora_layer_name, None) |
|
if module is not None and hasattr(self, 'weight'): |
|
self.weight += lora_calc_updown(lora, module, self.weight) |
|
continue |
|
|
|
module_q = lora.modules.get(lora_layer_name + "_q_proj", None) |
|
module_k = lora.modules.get(lora_layer_name + "_k_proj", None) |
|
module_v = lora.modules.get(lora_layer_name + "_v_proj", None) |
|
module_out = lora.modules.get(lora_layer_name + "_out_proj", None) |
|
|
|
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: |
|
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight) |
|
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight) |
|
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight) |
|
updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) |
|
|
|
self.in_proj_weight += updown_qkv |
|
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight) |
|
continue |
|
|
|
if module is None: |
|
continue |
|
|
|
print(f'failed to calculate lora weights for layer {lora_layer_name}') |
|
|
|
self.lora_current_names = wanted_names |
|
|
|
|
|
def lora_forward(module, input, original_forward): |
|
""" |
|
Old way of applying Lora by executing operations during layer's forward. |
|
Stacking many loras this way results in big performance degradation. |
|
""" |
|
|
|
if len(loaded_loras) == 0: |
|
return original_forward(module, input) |
|
|
|
input = devices.cond_cast_unet(input) |
|
|
|
lora_restore_weights_from_backup(module) |
|
lora_reset_cached_weight(module) |
|
|
|
res = original_forward(module, input) |
|
|
|
lora_layer_name = getattr(module, 'lora_layer_name', None) |
|
for lora in loaded_loras: |
|
module = lora.modules.get(lora_layer_name, None) |
|
if module is None: |
|
continue |
|
|
|
module.up.to(device=devices.device) |
|
module.down.to(device=devices.device) |
|
|
|
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) |
|
|
|
return res |
|
|
|
|
|
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): |
|
self.lora_current_names = () |
|
self.lora_weights_backup = None |
|
|
|
|
|
def lora_Linear_forward(self, input): |
|
if shared.opts.lora_functional: |
|
return lora_forward(self, input, torch.nn.Linear_forward_before_lora) |
|
|
|
lora_apply_weights(self) |
|
|
|
return torch.nn.Linear_forward_before_lora(self, input) |
|
|
|
|
|
def lora_Linear_load_state_dict(self, *args, **kwargs): |
|
lora_reset_cached_weight(self) |
|
|
|
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs) |
|
|
|
|
|
def lora_Conv2d_forward(self, input): |
|
if shared.opts.lora_functional: |
|
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora) |
|
|
|
lora_apply_weights(self) |
|
|
|
return torch.nn.Conv2d_forward_before_lora(self, input) |
|
|
|
|
|
def lora_Conv2d_load_state_dict(self, *args, **kwargs): |
|
lora_reset_cached_weight(self) |
|
|
|
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs) |
|
|
|
|
|
def lora_MultiheadAttention_forward(self, *args, **kwargs): |
|
lora_apply_weights(self) |
|
|
|
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs) |
|
|
|
|
|
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs): |
|
lora_reset_cached_weight(self) |
|
|
|
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs) |
|
|
|
|
|
def list_available_loras(): |
|
available_loras.clear() |
|
available_lora_aliases.clear() |
|
forbidden_lora_aliases.clear() |
|
available_lora_hash_lookup.clear() |
|
forbidden_lora_aliases.update({"none": 1, "Addams": 1}) |
|
|
|
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) |
|
|
|
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"])) |
|
for filename in sorted(candidates, key=str.lower): |
|
if os.path.isdir(filename): |
|
continue |
|
|
|
name = os.path.splitext(os.path.basename(filename))[0] |
|
try: |
|
entry = LoraOnDisk(name, filename) |
|
except OSError: |
|
errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True) |
|
continue |
|
|
|
available_loras[name] = entry |
|
|
|
if entry.alias in available_lora_aliases: |
|
forbidden_lora_aliases[entry.alias.lower()] = 1 |
|
|
|
available_lora_aliases[name] = entry |
|
available_lora_aliases[entry.alias] = entry |
|
|
|
|
|
re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)") |
|
|
|
|
|
def infotext_pasted(infotext, params): |
|
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]: |
|
return |
|
|
|
added = [] |
|
|
|
for k in params: |
|
if not k.startswith("AddNet Model "): |
|
continue |
|
|
|
num = k[13:] |
|
|
|
if params.get("AddNet Module " + num) != "LoRA": |
|
continue |
|
|
|
name = params.get("AddNet Model " + num) |
|
if name is None: |
|
continue |
|
|
|
m = re_lora_name.match(name) |
|
if m: |
|
name = m.group(1) |
|
|
|
multiplier = params.get("AddNet Weight A " + num, "1.0") |
|
|
|
added.append(f"<lora:{name}:{multiplier}>") |
|
|
|
if added: |
|
params["Prompt"] += "\n" + "".join(added) |
|
|
|
|
|
available_loras = {} |
|
available_lora_aliases = {} |
|
available_lora_hash_lookup = {} |
|
forbidden_lora_aliases = {} |
|
loaded_loras = [] |
|
|
|
list_available_loras() |
|
|