init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .eslintignore +4 -0
- .eslintrc.js +91 -0
- .git-blame-ignore-revs +2 -0
- .gitignore +40 -0
- .pylintrc +3 -0
- CHANGELOG.md +257 -0
- CODEOWNERS +12 -0
- LICENSE.txt +663 -0
- README.md +227 -0
- configs/alt-diffusion-inference.yaml +72 -0
- configs/instruct-pix2pix.yaml +98 -0
- configs/v1-inference.yaml +70 -0
- configs/v1-inpainting-inference.yaml +70 -0
- environment-wsl2.yaml +11 -0
- extensions-builtin/LDSR/ldsr_model_arch.py +252 -0
- extensions-builtin/LDSR/preload.py +6 -0
- extensions-builtin/LDSR/scripts/ldsr_model.py +72 -0
- extensions-builtin/LDSR/sd_hijack_autoencoder.py +293 -0
- extensions-builtin/LDSR/sd_hijack_ddpm_v1.py +1443 -0
- extensions-builtin/LDSR/vqvae_quantize.py +147 -0
- extensions-builtin/Lora/extra_networks_lora.py +45 -0
- extensions-builtin/Lora/lora.py +506 -0
- extensions-builtin/Lora/preload.py +6 -0
- extensions-builtin/Lora/scripts/lora_script.py +116 -0
- extensions-builtin/Lora/ui_extra_networks_lora.py +36 -0
- extensions-builtin/ScuNET/preload.py +6 -0
- extensions-builtin/ScuNET/scripts/scunet_model.py +148 -0
- extensions-builtin/ScuNET/scunet_model_arch.py +268 -0
- extensions-builtin/SwinIR/preload.py +6 -0
- extensions-builtin/SwinIR/scripts/swinir_model.py +177 -0
- extensions-builtin/SwinIR/swinir_model_arch.py +867 -0
- extensions-builtin/SwinIR/swinir_model_arch_v2.py +1017 -0
- extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js +640 -0
- extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py +10 -0
- extensions-builtin/canvas-zoom-and-pan/style.css +63 -0
- extensions-builtin/extra-options-section/scripts/extra_options_section.py +48 -0
- extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js +42 -0
- extensions-builtin/sd_theme_editor/install.py +1 -0
- extensions-builtin/sd_theme_editor/javascript/ui_theme.js +435 -0
- extensions-builtin/sd_theme_editor/scripts/ui_theme.py +177 -0
- extensions-builtin/sd_theme_editor/style.css +113 -0
- extensions-builtin/sd_theme_editor/themes/Golde.css +1 -0
- extensions-builtin/sd_theme_editor/themes/backup.css +1 -0
- extensions-builtin/sd_theme_editor/themes/d-230-52-94.css +1 -0
- extensions-builtin/sd_theme_editor/themes/default.css +1 -0
- extensions-builtin/sd_theme_editor/themes/default_cyan.css +1 -0
- extensions-builtin/sd_theme_editor/themes/default_orange.css +1 -0
- extensions-builtin/sd_theme_editor/themes/fun.css +1 -0
- extensions-builtin/sd_theme_editor/themes/minimal.css +1 -0
- extensions-builtin/sd_theme_editor/themes/minimal_orange.css +1 -0
.eslintignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
extensions
|
2 |
+
extensions-disabled
|
3 |
+
repositories
|
4 |
+
venv
|
.eslintrc.js
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* global module */
|
2 |
+
module.exports = {
|
3 |
+
env: {
|
4 |
+
browser: true,
|
5 |
+
es2021: true,
|
6 |
+
},
|
7 |
+
extends: "eslint:recommended",
|
8 |
+
parserOptions: {
|
9 |
+
ecmaVersion: "latest",
|
10 |
+
},
|
11 |
+
rules: {
|
12 |
+
"arrow-spacing": "error",
|
13 |
+
"block-spacing": "error",
|
14 |
+
"brace-style": "error",
|
15 |
+
"comma-dangle": ["error", "only-multiline"],
|
16 |
+
"comma-spacing": "error",
|
17 |
+
"comma-style": ["error", "last"],
|
18 |
+
"curly": ["error", "multi-line", "consistent"],
|
19 |
+
"eol-last": "error",
|
20 |
+
"func-call-spacing": "error",
|
21 |
+
"function-call-argument-newline": ["error", "consistent"],
|
22 |
+
"function-paren-newline": ["error", "consistent"],
|
23 |
+
"indent": ["error", 4],
|
24 |
+
"key-spacing": "error",
|
25 |
+
"keyword-spacing": "error",
|
26 |
+
"linebreak-style": ["error", "unix"],
|
27 |
+
"no-extra-semi": "error",
|
28 |
+
"no-mixed-spaces-and-tabs": "error",
|
29 |
+
"no-multi-spaces": "error",
|
30 |
+
"no-redeclare": ["error", {builtinGlobals: false}],
|
31 |
+
"no-trailing-spaces": "error",
|
32 |
+
"no-unused-vars": "off",
|
33 |
+
"no-whitespace-before-property": "error",
|
34 |
+
"object-curly-newline": ["error", {consistent: true, multiline: true}],
|
35 |
+
"object-curly-spacing": ["error", "never"],
|
36 |
+
"operator-linebreak": ["error", "after"],
|
37 |
+
"quote-props": ["error", "consistent-as-needed"],
|
38 |
+
"semi": ["error", "always"],
|
39 |
+
"semi-spacing": "error",
|
40 |
+
"semi-style": ["error", "last"],
|
41 |
+
"space-before-blocks": "error",
|
42 |
+
"space-before-function-paren": ["error", "never"],
|
43 |
+
"space-in-parens": ["error", "never"],
|
44 |
+
"space-infix-ops": "error",
|
45 |
+
"space-unary-ops": "error",
|
46 |
+
"switch-colon-spacing": "error",
|
47 |
+
"template-curly-spacing": ["error", "never"],
|
48 |
+
"unicode-bom": "error",
|
49 |
+
},
|
50 |
+
globals: {
|
51 |
+
//script.js
|
52 |
+
gradioApp: "readonly",
|
53 |
+
executeCallbacks: "readonly",
|
54 |
+
onAfterUiUpdate: "readonly",
|
55 |
+
onOptionsChanged: "readonly",
|
56 |
+
onUiLoaded: "readonly",
|
57 |
+
onUiUpdate: "readonly",
|
58 |
+
uiCurrentTab: "writable",
|
59 |
+
uiElementInSight: "readonly",
|
60 |
+
uiElementIsVisible: "readonly",
|
61 |
+
//ui.js
|
62 |
+
opts: "writable",
|
63 |
+
all_gallery_buttons: "readonly",
|
64 |
+
selected_gallery_button: "readonly",
|
65 |
+
selected_gallery_index: "readonly",
|
66 |
+
switch_to_txt2img: "readonly",
|
67 |
+
switch_to_img2img_tab: "readonly",
|
68 |
+
switch_to_img2img: "readonly",
|
69 |
+
switch_to_sketch: "readonly",
|
70 |
+
switch_to_inpaint: "readonly",
|
71 |
+
switch_to_inpaint_sketch: "readonly",
|
72 |
+
switch_to_extras: "readonly",
|
73 |
+
get_tab_index: "readonly",
|
74 |
+
create_submit_args: "readonly",
|
75 |
+
restart_reload: "readonly",
|
76 |
+
updateInput: "readonly",
|
77 |
+
//extraNetworks.js
|
78 |
+
requestGet: "readonly",
|
79 |
+
popup: "readonly",
|
80 |
+
// from python
|
81 |
+
localization: "readonly",
|
82 |
+
// progrssbar.js
|
83 |
+
randomId: "readonly",
|
84 |
+
requestProgress: "readonly",
|
85 |
+
// imageviewer.js
|
86 |
+
modalPrevImage: "readonly",
|
87 |
+
modalNextImage: "readonly",
|
88 |
+
// token-counters.js
|
89 |
+
setupTokenCounters: "readonly",
|
90 |
+
}
|
91 |
+
};
|
.git-blame-ignore-revs
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Apply ESlint
|
2 |
+
9c54b78d9dde5601e916f308d9a9d6953ec39430
|
.gitignore
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
*.ckpt
|
3 |
+
*.safetensors
|
4 |
+
*.pth
|
5 |
+
/ESRGAN/*
|
6 |
+
/SwinIR/*
|
7 |
+
/repositories
|
8 |
+
/venv
|
9 |
+
/tmp
|
10 |
+
/model.ckpt
|
11 |
+
/models/**/*
|
12 |
+
/GFPGANv1.3.pth
|
13 |
+
/gfpgan/weights/*.pth
|
14 |
+
/ui-config.json
|
15 |
+
/outputs
|
16 |
+
/config.json
|
17 |
+
/log
|
18 |
+
/webui.settings.bat
|
19 |
+
/embeddings
|
20 |
+
/styles.csv
|
21 |
+
/params.txt
|
22 |
+
/styles.csv.bak
|
23 |
+
/webui-user.bat
|
24 |
+
/webui-user.sh
|
25 |
+
/interrogate
|
26 |
+
/user.css
|
27 |
+
/.idea
|
28 |
+
notification.mp3
|
29 |
+
/SwinIR
|
30 |
+
/textual_inversion
|
31 |
+
.vscode
|
32 |
+
/extensions
|
33 |
+
/test/stdout.txt
|
34 |
+
/test/stderr.txt
|
35 |
+
/cache.json*
|
36 |
+
/config_states/
|
37 |
+
/node_modules
|
38 |
+
/package-lock.json
|
39 |
+
/.coverage*
|
40 |
+
/venv
|
.pylintrc
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html
|
2 |
+
[MESSAGES CONTROL]
|
3 |
+
disable=C,R,W,E,I
|
CHANGELOG.md
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## 1.4.0
|
2 |
+
|
3 |
+
### Features:
|
4 |
+
* zoom controls for inpainting
|
5 |
+
* run basic torch calculation at startup in parallel to reduce the performance impact of first generation
|
6 |
+
* option to pad prompt/neg prompt to be same length
|
7 |
+
* remove taming_transformers dependency
|
8 |
+
* custom k-diffusion scheduler settings
|
9 |
+
* add an option to show selected settings in main txt2img/img2img UI
|
10 |
+
* sysinfo tab in settings
|
11 |
+
* infer styles from prompts when pasting params into the UI
|
12 |
+
* an option to control the behavior of the above
|
13 |
+
|
14 |
+
### Minor:
|
15 |
+
* bump Gradio to 3.32.0
|
16 |
+
* bump xformers to 0.0.20
|
17 |
+
* Add option to disable token counters
|
18 |
+
* tooltip fixes & optimizations
|
19 |
+
* make it possible to configure filename for the zip download
|
20 |
+
* `[vae_filename]` pattern for filenames
|
21 |
+
* Revert discarding penultimate sigma for DPM-Solver++(2M) SDE
|
22 |
+
* change UI reorder setting to multiselect
|
23 |
+
* read version info form CHANGELOG.md if git version info is not available
|
24 |
+
* link footer API to Wiki when API is not active
|
25 |
+
* persistent conds cache (opt-in optimization)
|
26 |
+
|
27 |
+
### Extensions:
|
28 |
+
* After installing extensions, webui properly restarts the process rather than reloads the UI
|
29 |
+
* Added VAE listing to web API. Via: /sdapi/v1/sd-vae
|
30 |
+
* custom unet support
|
31 |
+
* Add onAfterUiUpdate callback
|
32 |
+
* refactor EmbeddingDatabase.register_embedding() to allow unregistering
|
33 |
+
* add before_process callback for scripts
|
34 |
+
* add ability for alwayson scripts to specify section and let user reorder those sections
|
35 |
+
|
36 |
+
### Bug Fixes:
|
37 |
+
* Fix dragging text to prompt
|
38 |
+
* fix incorrect quoting for infotext values with colon in them
|
39 |
+
* fix "hires. fix" prompt sharing same labels with txt2img_prompt
|
40 |
+
* Fix s_min_uncond default type int
|
41 |
+
* Fix for #10643 (Inpainting mask sometimes not working)
|
42 |
+
* fix bad styling for thumbs view in extra networks #10639
|
43 |
+
* fix for empty list of optimizations #10605
|
44 |
+
* small fixes to prepare_tcmalloc for Debian/Ubuntu compatibility
|
45 |
+
* fix --ui-debug-mode exit
|
46 |
+
* patch GitPython to not use leaky persistent processes
|
47 |
+
* fix duplicate Cross attention optimization after UI reload
|
48 |
+
* torch.cuda.is_available() check for SdOptimizationXformers
|
49 |
+
* fix hires fix using wrong conds in second pass if using Loras.
|
50 |
+
* handle exception when parsing generation parameters from png info
|
51 |
+
* fix upcast attention dtype error
|
52 |
+
* forcing Torch Version to 1.13.1 for RX 5000 series GPUs
|
53 |
+
* split mask blur into X and Y components, patch Outpainting MK2 accordingly
|
54 |
+
* don't die when a LoRA is a broken symlink
|
55 |
+
* allow activation of Generate Forever during generation
|
56 |
+
|
57 |
+
|
58 |
+
## 1.3.2
|
59 |
+
|
60 |
+
### Bug Fixes:
|
61 |
+
* fix files served out of tmp directory even if they are saved to disk
|
62 |
+
* fix postprocessing overwriting parameters
|
63 |
+
|
64 |
+
## 1.3.1
|
65 |
+
|
66 |
+
### Features:
|
67 |
+
* revert default cross attention optimization to Doggettx
|
68 |
+
|
69 |
+
### Bug Fixes:
|
70 |
+
* fix bug: LoRA don't apply on dropdown list sd_lora
|
71 |
+
* fix png info always added even if setting is not enabled
|
72 |
+
* fix some fields not applying in xyz plot
|
73 |
+
* fix "hires. fix" prompt sharing same labels with txt2img_prompt
|
74 |
+
* fix lora hashes not being added properly to infotex if there is only one lora
|
75 |
+
* fix --use-cpu failing to work properly at startup
|
76 |
+
* make --disable-opt-split-attention command line option work again
|
77 |
+
|
78 |
+
## 1.3.0
|
79 |
+
|
80 |
+
### Features:
|
81 |
+
* add UI to edit defaults
|
82 |
+
* token merging (via dbolya/tomesd)
|
83 |
+
* settings tab rework: add a lot of additional explanations and links
|
84 |
+
* load extensions' Git metadata in parallel to loading the main program to save a ton of time during startup
|
85 |
+
* update extensions table: show branch, show date in separate column, and show version from tags if available
|
86 |
+
* TAESD - another option for cheap live previews
|
87 |
+
* allow choosing sampler and prompts for second pass of hires fix - hidden by default, enabled in settings
|
88 |
+
* calculate hashes for Lora
|
89 |
+
* add lora hashes to infotext
|
90 |
+
* when pasting infotext, use infotext's lora hashes to find local loras for `<lora:xxx:1>` entries whose hashes match loras the user has
|
91 |
+
* select cross attention optimization from UI
|
92 |
+
|
93 |
+
### Minor:
|
94 |
+
* bump Gradio to 3.31.0
|
95 |
+
* bump PyTorch to 2.0.1 for macOS and Linux AMD
|
96 |
+
* allow setting defaults for elements in extensions' tabs
|
97 |
+
* allow selecting file type for live previews
|
98 |
+
* show "Loading..." for extra networks when displaying for the first time
|
99 |
+
* suppress ENSD infotext for samplers that don't use it
|
100 |
+
* clientside optimizations
|
101 |
+
* add options to show/hide hidden files and dirs in extra networks, and to not list models/files in hidden directories
|
102 |
+
* allow whitespace in styles.csv
|
103 |
+
* add option to reorder tabs
|
104 |
+
* move some functionality (swap resolution and set seed to -1) to client
|
105 |
+
* option to specify editor height for img2img
|
106 |
+
* button to copy image resolution into img2img width/height sliders
|
107 |
+
* switch from pyngrok to ngrok-py
|
108 |
+
* lazy-load images in extra networks UI
|
109 |
+
* set "Navigate image viewer with gamepad" option to false by default, by request
|
110 |
+
* change upscalers to download models into user-specified directory (from commandline args) rather than the default models/<...>
|
111 |
+
* allow hiding buttons in ui-config.json
|
112 |
+
|
113 |
+
### Extensions:
|
114 |
+
* add /sdapi/v1/script-info api
|
115 |
+
* use Ruff to lint Python code
|
116 |
+
* use ESlint to lint Javascript code
|
117 |
+
* add/modify CFG callbacks for Self-Attention Guidance extension
|
118 |
+
* add command and endpoint for graceful server stopping
|
119 |
+
* add some locals (prompts/seeds/etc) from processing function into the Processing class as fields
|
120 |
+
* rework quoting for infotext items that have commas in them to use JSON (should be backwards compatible except for cases where it didn't work previously)
|
121 |
+
* add /sdapi/v1/refresh-loras api checkpoint post request
|
122 |
+
* tests overhaul
|
123 |
+
|
124 |
+
### Bug Fixes:
|
125 |
+
* fix an issue preventing the program from starting if the user specifies a bad Gradio theme
|
126 |
+
* fix broken prompts from file script
|
127 |
+
* fix symlink scanning for extra networks
|
128 |
+
* fix --data-dir ignored when launching via webui-user.bat COMMANDLINE_ARGS
|
129 |
+
* allow web UI to be ran fully offline
|
130 |
+
* fix inability to run with --freeze-settings
|
131 |
+
* fix inability to merge checkpoint without adding metadata
|
132 |
+
* fix extra networks' save preview image not adding infotext for jpeg/webm
|
133 |
+
* remove blinking effect from text in hires fix and scale resolution preview
|
134 |
+
* make links to `http://<...>.git` extensions work in the extension tab
|
135 |
+
* fix bug with webui hanging at startup due to hanging git process
|
136 |
+
|
137 |
+
|
138 |
+
## 1.2.1
|
139 |
+
|
140 |
+
### Features:
|
141 |
+
* add an option to always refer to LoRA by filenames
|
142 |
+
|
143 |
+
### Bug Fixes:
|
144 |
+
* never refer to LoRA by an alias if multiple LoRAs have same alias or the alias is called none
|
145 |
+
* fix upscalers disappearing after the user reloads UI
|
146 |
+
* allow bf16 in safe unpickler (resolves problems with loading some LoRAs)
|
147 |
+
* allow web UI to be ran fully offline
|
148 |
+
* fix localizations not working
|
149 |
+
* fix error for LoRAs: `'LatentDiffusion' object has no attribute 'lora_layer_mapping'`
|
150 |
+
|
151 |
+
## 1.2.0
|
152 |
+
|
153 |
+
### Features:
|
154 |
+
* do not wait for Stable Diffusion model to load at startup
|
155 |
+
* add filename patterns: `[denoising]`
|
156 |
+
* directory hiding for extra networks: dirs starting with `.` will hide their cards on extra network tabs unless specifically searched for
|
157 |
+
* LoRA: for the `<...>` text in prompt, use name of LoRA that is in the metdata of the file, if present, instead of filename (both can be used to activate LoRA)
|
158 |
+
* LoRA: read infotext params from kohya-ss's extension parameters if they are present and if his extension is not active
|
159 |
+
* LoRA: fix some LoRAs not working (ones that have 3x3 convolution layer)
|
160 |
+
* LoRA: add an option to use old method of applying LoRAs (producing same results as with kohya-ss)
|
161 |
+
* add version to infotext, footer and console output when starting
|
162 |
+
* add links to wiki for filename pattern settings
|
163 |
+
* add extended info for quicksettings setting and use multiselect input instead of a text field
|
164 |
+
|
165 |
+
### Minor:
|
166 |
+
* bump Gradio to 3.29.0
|
167 |
+
* bump PyTorch to 2.0.1
|
168 |
+
* `--subpath` option for gradio for use with reverse proxy
|
169 |
+
* Linux/macOS: use existing virtualenv if already active (the VIRTUAL_ENV environment variable)
|
170 |
+
* do not apply localizations if there are none (possible frontend optimization)
|
171 |
+
* add extra `None` option for VAE in XYZ plot
|
172 |
+
* print error to console when batch processing in img2img fails
|
173 |
+
* create HTML for extra network pages only on demand
|
174 |
+
* allow directories starting with `.` to still list their models for LoRA, checkpoints, etc
|
175 |
+
* put infotext options into their own category in settings tab
|
176 |
+
* do not show licenses page when user selects Show all pages in settings
|
177 |
+
|
178 |
+
### Extensions:
|
179 |
+
* tooltip localization support
|
180 |
+
* add API method to get LoRA models with prompt
|
181 |
+
|
182 |
+
### Bug Fixes:
|
183 |
+
* re-add `/docs` endpoint
|
184 |
+
* fix gamepad navigation
|
185 |
+
* make the lightbox fullscreen image function properly
|
186 |
+
* fix squished thumbnails in extras tab
|
187 |
+
* keep "search" filter for extra networks when user refreshes the tab (previously it showed everthing after you refreshed)
|
188 |
+
* fix webui showing the same image if you configure the generation to always save results into same file
|
189 |
+
* fix bug with upscalers not working properly
|
190 |
+
* fix MPS on PyTorch 2.0.1, Intel Macs
|
191 |
+
* make it so that custom context menu from contextMenu.js only disappears after user's click, ignoring non-user click events
|
192 |
+
* prevent Reload UI button/link from reloading the page when it's not yet ready
|
193 |
+
* fix prompts from file script failing to read contents from a drag/drop file
|
194 |
+
|
195 |
+
|
196 |
+
## 1.1.1
|
197 |
+
### Bug Fixes:
|
198 |
+
* fix an error that prevents running webui on PyTorch<2.0 without --disable-safe-unpickle
|
199 |
+
|
200 |
+
## 1.1.0
|
201 |
+
### Features:
|
202 |
+
* switch to PyTorch 2.0.0 (except for AMD GPUs)
|
203 |
+
* visual improvements to custom code scripts
|
204 |
+
* add filename patterns: `[clip_skip]`, `[hasprompt<>]`, `[batch_number]`, `[generation_number]`
|
205 |
+
* add support for saving init images in img2img, and record their hashes in infotext for reproducability
|
206 |
+
* automatically select current word when adjusting weight with ctrl+up/down
|
207 |
+
* add dropdowns for X/Y/Z plot
|
208 |
+
* add setting: Stable Diffusion/Random number generator source: makes it possible to make images generated from a given manual seed consistent across different GPUs
|
209 |
+
* support Gradio's theme API
|
210 |
+
* use TCMalloc on Linux by default; possible fix for memory leaks
|
211 |
+
* add optimization option to remove negative conditioning at low sigma values #9177
|
212 |
+
* embed model merge metadata in .safetensors file
|
213 |
+
* extension settings backup/restore feature #9169
|
214 |
+
* add "resize by" and "resize to" tabs to img2img
|
215 |
+
* add option "keep original size" to textual inversion images preprocess
|
216 |
+
* image viewer scrolling via analog stick
|
217 |
+
* button to restore the progress from session lost / tab reload
|
218 |
+
|
219 |
+
### Minor:
|
220 |
+
* bump Gradio to 3.28.1
|
221 |
+
* change "scale to" to sliders in Extras tab
|
222 |
+
* add labels to tool buttons to make it possible to hide them
|
223 |
+
* add tiled inference support for ScuNET
|
224 |
+
* add branch support for extension installation
|
225 |
+
* change Linux installation script to install into current directory rather than `/home/username`
|
226 |
+
* sort textual inversion embeddings by name (case-insensitive)
|
227 |
+
* allow styles.csv to be symlinked or mounted in docker
|
228 |
+
* remove the "do not add watermark to images" option
|
229 |
+
* make selected tab configurable with UI config
|
230 |
+
* make the extra networks UI fixed height and scrollable
|
231 |
+
* add `disable_tls_verify` arg for use with self-signed certs
|
232 |
+
|
233 |
+
### Extensions:
|
234 |
+
* add reload callback
|
235 |
+
* add `is_hr_pass` field for processing
|
236 |
+
|
237 |
+
### Bug Fixes:
|
238 |
+
* fix broken batch image processing on 'Extras/Batch Process' tab
|
239 |
+
* add "None" option to extra networks dropdowns
|
240 |
+
* fix FileExistsError for CLIP Interrogator
|
241 |
+
* fix /sdapi/v1/txt2img endpoint not working on Linux #9319
|
242 |
+
* fix disappearing live previews and progressbar during slow tasks
|
243 |
+
* fix fullscreen image view not working properly in some cases
|
244 |
+
* prevent alwayson_scripts args param resizing script_arg list when they are inserted in it
|
245 |
+
* fix prompt schedule for second order samplers
|
246 |
+
* fix image mask/composite for weird resolutions #9628
|
247 |
+
* use correct images for previews when using AND (see #9491)
|
248 |
+
* one broken image in img2img batch won't stop all processing
|
249 |
+
* fix image orientation bug in train/preprocess
|
250 |
+
* fix Ngrok recreating tunnels every reload
|
251 |
+
* fix `--realesrgan-models-path` and `--ldsr-models-path` not working
|
252 |
+
* fix `--skip-install` not working
|
253 |
+
* use SAMPLE file format in Outpainting Mk2 & Poorman
|
254 |
+
* do not fail all LoRAs if some have failed to load when making a picture
|
255 |
+
|
256 |
+
## 1.0.0
|
257 |
+
* everything
|
CODEOWNERS
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* @anapnoe
|
2 |
+
|
3 |
+
# if you were managing a localization and were removed from this file, this is because
|
4 |
+
# the intended way to do localizations now is via extensions. See:
|
5 |
+
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
|
6 |
+
# Make a repo with your localization and since you are still listed as a collaborator
|
7 |
+
# you can add it to the wiki page yourself. This change is because some people complained
|
8 |
+
# the git commit log is cluttered with things unrelated to almost everyone and
|
9 |
+
# because I believe this is the best overall for the project to handle localizations almost
|
10 |
+
# entirely without my oversight.
|
11 |
+
|
12 |
+
|
LICENSE.txt
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GNU AFFERO GENERAL PUBLIC LICENSE
|
2 |
+
Version 3, 19 November 2007
|
3 |
+
|
4 |
+
Copyright (c) 2023 AUTOMATIC1111
|
5 |
+
|
6 |
+
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
7 |
+
Everyone is permitted to copy and distribute verbatim copies
|
8 |
+
of this license document, but changing it is not allowed.
|
9 |
+
|
10 |
+
Preamble
|
11 |
+
|
12 |
+
The GNU Affero General Public License is a free, copyleft license for
|
13 |
+
software and other kinds of works, specifically designed to ensure
|
14 |
+
cooperation with the community in the case of network server software.
|
15 |
+
|
16 |
+
The licenses for most software and other practical works are designed
|
17 |
+
to take away your freedom to share and change the works. By contrast,
|
18 |
+
our General Public Licenses are intended to guarantee your freedom to
|
19 |
+
share and change all versions of a program--to make sure it remains free
|
20 |
+
software for all its users.
|
21 |
+
|
22 |
+
When we speak of free software, we are referring to freedom, not
|
23 |
+
price. Our General Public Licenses are designed to make sure that you
|
24 |
+
have the freedom to distribute copies of free software (and charge for
|
25 |
+
them if you wish), that you receive source code or can get it if you
|
26 |
+
want it, that you can change the software or use pieces of it in new
|
27 |
+
free programs, and that you know you can do these things.
|
28 |
+
|
29 |
+
Developers that use our General Public Licenses protect your rights
|
30 |
+
with two steps: (1) assert copyright on the software, and (2) offer
|
31 |
+
you this License which gives you legal permission to copy, distribute
|
32 |
+
and/or modify the software.
|
33 |
+
|
34 |
+
A secondary benefit of defending all users' freedom is that
|
35 |
+
improvements made in alternate versions of the program, if they
|
36 |
+
receive widespread use, become available for other developers to
|
37 |
+
incorporate. Many developers of free software are heartened and
|
38 |
+
encouraged by the resulting cooperation. However, in the case of
|
39 |
+
software used on network servers, this result may fail to come about.
|
40 |
+
The GNU General Public License permits making a modified version and
|
41 |
+
letting the public access it on a server without ever releasing its
|
42 |
+
source code to the public.
|
43 |
+
|
44 |
+
The GNU Affero General Public License is designed specifically to
|
45 |
+
ensure that, in such cases, the modified source code becomes available
|
46 |
+
to the community. It requires the operator of a network server to
|
47 |
+
provide the source code of the modified version running there to the
|
48 |
+
users of that server. Therefore, public use of a modified version, on
|
49 |
+
a publicly accessible server, gives the public access to the source
|
50 |
+
code of the modified version.
|
51 |
+
|
52 |
+
An older license, called the Affero General Public License and
|
53 |
+
published by Affero, was designed to accomplish similar goals. This is
|
54 |
+
a different license, not a version of the Affero GPL, but Affero has
|
55 |
+
released a new version of the Affero GPL which permits relicensing under
|
56 |
+
this license.
|
57 |
+
|
58 |
+
The precise terms and conditions for copying, distribution and
|
59 |
+
modification follow.
|
60 |
+
|
61 |
+
TERMS AND CONDITIONS
|
62 |
+
|
63 |
+
0. Definitions.
|
64 |
+
|
65 |
+
"This License" refers to version 3 of the GNU Affero General Public License.
|
66 |
+
|
67 |
+
"Copyright" also means copyright-like laws that apply to other kinds of
|
68 |
+
works, such as semiconductor masks.
|
69 |
+
|
70 |
+
"The Program" refers to any copyrightable work licensed under this
|
71 |
+
License. Each licensee is addressed as "you". "Licensees" and
|
72 |
+
"recipients" may be individuals or organizations.
|
73 |
+
|
74 |
+
To "modify" a work means to copy from or adapt all or part of the work
|
75 |
+
in a fashion requiring copyright permission, other than the making of an
|
76 |
+
exact copy. The resulting work is called a "modified version" of the
|
77 |
+
earlier work or a work "based on" the earlier work.
|
78 |
+
|
79 |
+
A "covered work" means either the unmodified Program or a work based
|
80 |
+
on the Program.
|
81 |
+
|
82 |
+
To "propagate" a work means to do anything with it that, without
|
83 |
+
permission, would make you directly or secondarily liable for
|
84 |
+
infringement under applicable copyright law, except executing it on a
|
85 |
+
computer or modifying a private copy. Propagation includes copying,
|
86 |
+
distribution (with or without modification), making available to the
|
87 |
+
public, and in some countries other activities as well.
|
88 |
+
|
89 |
+
To "convey" a work means any kind of propagation that enables other
|
90 |
+
parties to make or receive copies. Mere interaction with a user through
|
91 |
+
a computer network, with no transfer of a copy, is not conveying.
|
92 |
+
|
93 |
+
An interactive user interface displays "Appropriate Legal Notices"
|
94 |
+
to the extent that it includes a convenient and prominently visible
|
95 |
+
feature that (1) displays an appropriate copyright notice, and (2)
|
96 |
+
tells the user that there is no warranty for the work (except to the
|
97 |
+
extent that warranties are provided), that licensees may convey the
|
98 |
+
work under this License, and how to view a copy of this License. If
|
99 |
+
the interface presents a list of user commands or options, such as a
|
100 |
+
menu, a prominent item in the list meets this criterion.
|
101 |
+
|
102 |
+
1. Source Code.
|
103 |
+
|
104 |
+
The "source code" for a work means the preferred form of the work
|
105 |
+
for making modifications to it. "Object code" means any non-source
|
106 |
+
form of a work.
|
107 |
+
|
108 |
+
A "Standard Interface" means an interface that either is an official
|
109 |
+
standard defined by a recognized standards body, or, in the case of
|
110 |
+
interfaces specified for a particular programming language, one that
|
111 |
+
is widely used among developers working in that language.
|
112 |
+
|
113 |
+
The "System Libraries" of an executable work include anything, other
|
114 |
+
than the work as a whole, that (a) is included in the normal form of
|
115 |
+
packaging a Major Component, but which is not part of that Major
|
116 |
+
Component, and (b) serves only to enable use of the work with that
|
117 |
+
Major Component, or to implement a Standard Interface for which an
|
118 |
+
implementation is available to the public in source code form. A
|
119 |
+
"Major Component", in this context, means a major essential component
|
120 |
+
(kernel, window system, and so on) of the specific operating system
|
121 |
+
(if any) on which the executable work runs, or a compiler used to
|
122 |
+
produce the work, or an object code interpreter used to run it.
|
123 |
+
|
124 |
+
The "Corresponding Source" for a work in object code form means all
|
125 |
+
the source code needed to generate, install, and (for an executable
|
126 |
+
work) run the object code and to modify the work, including scripts to
|
127 |
+
control those activities. However, it does not include the work's
|
128 |
+
System Libraries, or general-purpose tools or generally available free
|
129 |
+
programs which are used unmodified in performing those activities but
|
130 |
+
which are not part of the work. For example, Corresponding Source
|
131 |
+
includes interface definition files associated with source files for
|
132 |
+
the work, and the source code for shared libraries and dynamically
|
133 |
+
linked subprograms that the work is specifically designed to require,
|
134 |
+
such as by intimate data communication or control flow between those
|
135 |
+
subprograms and other parts of the work.
|
136 |
+
|
137 |
+
The Corresponding Source need not include anything that users
|
138 |
+
can regenerate automatically from other parts of the Corresponding
|
139 |
+
Source.
|
140 |
+
|
141 |
+
The Corresponding Source for a work in source code form is that
|
142 |
+
same work.
|
143 |
+
|
144 |
+
2. Basic Permissions.
|
145 |
+
|
146 |
+
All rights granted under this License are granted for the term of
|
147 |
+
copyright on the Program, and are irrevocable provided the stated
|
148 |
+
conditions are met. This License explicitly affirms your unlimited
|
149 |
+
permission to run the unmodified Program. The output from running a
|
150 |
+
covered work is covered by this License only if the output, given its
|
151 |
+
content, constitutes a covered work. This License acknowledges your
|
152 |
+
rights of fair use or other equivalent, as provided by copyright law.
|
153 |
+
|
154 |
+
You may make, run and propagate covered works that you do not
|
155 |
+
convey, without conditions so long as your license otherwise remains
|
156 |
+
in force. You may convey covered works to others for the sole purpose
|
157 |
+
of having them make modifications exclusively for you, or provide you
|
158 |
+
with facilities for running those works, provided that you comply with
|
159 |
+
the terms of this License in conveying all material for which you do
|
160 |
+
not control copyright. Those thus making or running the covered works
|
161 |
+
for you must do so exclusively on your behalf, under your direction
|
162 |
+
and control, on terms that prohibit them from making any copies of
|
163 |
+
your copyrighted material outside their relationship with you.
|
164 |
+
|
165 |
+
Conveying under any other circumstances is permitted solely under
|
166 |
+
the conditions stated below. Sublicensing is not allowed; section 10
|
167 |
+
makes it unnecessary.
|
168 |
+
|
169 |
+
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
170 |
+
|
171 |
+
No covered work shall be deemed part of an effective technological
|
172 |
+
measure under any applicable law fulfilling obligations under article
|
173 |
+
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
174 |
+
similar laws prohibiting or restricting circumvention of such
|
175 |
+
measures.
|
176 |
+
|
177 |
+
When you convey a covered work, you waive any legal power to forbid
|
178 |
+
circumvention of technological measures to the extent such circumvention
|
179 |
+
is effected by exercising rights under this License with respect to
|
180 |
+
the covered work, and you disclaim any intention to limit operation or
|
181 |
+
modification of the work as a means of enforcing, against the work's
|
182 |
+
users, your or third parties' legal rights to forbid circumvention of
|
183 |
+
technological measures.
|
184 |
+
|
185 |
+
4. Conveying Verbatim Copies.
|
186 |
+
|
187 |
+
You may convey verbatim copies of the Program's source code as you
|
188 |
+
receive it, in any medium, provided that you conspicuously and
|
189 |
+
appropriately publish on each copy an appropriate copyright notice;
|
190 |
+
keep intact all notices stating that this License and any
|
191 |
+
non-permissive terms added in accord with section 7 apply to the code;
|
192 |
+
keep intact all notices of the absence of any warranty; and give all
|
193 |
+
recipients a copy of this License along with the Program.
|
194 |
+
|
195 |
+
You may charge any price or no price for each copy that you convey,
|
196 |
+
and you may offer support or warranty protection for a fee.
|
197 |
+
|
198 |
+
5. Conveying Modified Source Versions.
|
199 |
+
|
200 |
+
You may convey a work based on the Program, or the modifications to
|
201 |
+
produce it from the Program, in the form of source code under the
|
202 |
+
terms of section 4, provided that you also meet all of these conditions:
|
203 |
+
|
204 |
+
a) The work must carry prominent notices stating that you modified
|
205 |
+
it, and giving a relevant date.
|
206 |
+
|
207 |
+
b) The work must carry prominent notices stating that it is
|
208 |
+
released under this License and any conditions added under section
|
209 |
+
7. This requirement modifies the requirement in section 4 to
|
210 |
+
"keep intact all notices".
|
211 |
+
|
212 |
+
c) You must license the entire work, as a whole, under this
|
213 |
+
License to anyone who comes into possession of a copy. This
|
214 |
+
License will therefore apply, along with any applicable section 7
|
215 |
+
additional terms, to the whole of the work, and all its parts,
|
216 |
+
regardless of how they are packaged. This License gives no
|
217 |
+
permission to license the work in any other way, but it does not
|
218 |
+
invalidate such permission if you have separately received it.
|
219 |
+
|
220 |
+
d) If the work has interactive user interfaces, each must display
|
221 |
+
Appropriate Legal Notices; however, if the Program has interactive
|
222 |
+
interfaces that do not display Appropriate Legal Notices, your
|
223 |
+
work need not make them do so.
|
224 |
+
|
225 |
+
A compilation of a covered work with other separate and independent
|
226 |
+
works, which are not by their nature extensions of the covered work,
|
227 |
+
and which are not combined with it such as to form a larger program,
|
228 |
+
in or on a volume of a storage or distribution medium, is called an
|
229 |
+
"aggregate" if the compilation and its resulting copyright are not
|
230 |
+
used to limit the access or legal rights of the compilation's users
|
231 |
+
beyond what the individual works permit. Inclusion of a covered work
|
232 |
+
in an aggregate does not cause this License to apply to the other
|
233 |
+
parts of the aggregate.
|
234 |
+
|
235 |
+
6. Conveying Non-Source Forms.
|
236 |
+
|
237 |
+
You may convey a covered work in object code form under the terms
|
238 |
+
of sections 4 and 5, provided that you also convey the
|
239 |
+
machine-readable Corresponding Source under the terms of this License,
|
240 |
+
in one of these ways:
|
241 |
+
|
242 |
+
a) Convey the object code in, or embodied in, a physical product
|
243 |
+
(including a physical distribution medium), accompanied by the
|
244 |
+
Corresponding Source fixed on a durable physical medium
|
245 |
+
customarily used for software interchange.
|
246 |
+
|
247 |
+
b) Convey the object code in, or embodied in, a physical product
|
248 |
+
(including a physical distribution medium), accompanied by a
|
249 |
+
written offer, valid for at least three years and valid for as
|
250 |
+
long as you offer spare parts or customer support for that product
|
251 |
+
model, to give anyone who possesses the object code either (1) a
|
252 |
+
copy of the Corresponding Source for all the software in the
|
253 |
+
product that is covered by this License, on a durable physical
|
254 |
+
medium customarily used for software interchange, for a price no
|
255 |
+
more than your reasonable cost of physically performing this
|
256 |
+
conveying of source, or (2) access to copy the
|
257 |
+
Corresponding Source from a network server at no charge.
|
258 |
+
|
259 |
+
c) Convey individual copies of the object code with a copy of the
|
260 |
+
written offer to provide the Corresponding Source. This
|
261 |
+
alternative is allowed only occasionally and noncommercially, and
|
262 |
+
only if you received the object code with such an offer, in accord
|
263 |
+
with subsection 6b.
|
264 |
+
|
265 |
+
d) Convey the object code by offering access from a designated
|
266 |
+
place (gratis or for a charge), and offer equivalent access to the
|
267 |
+
Corresponding Source in the same way through the same place at no
|
268 |
+
further charge. You need not require recipients to copy the
|
269 |
+
Corresponding Source along with the object code. If the place to
|
270 |
+
copy the object code is a network server, the Corresponding Source
|
271 |
+
may be on a different server (operated by you or a third party)
|
272 |
+
that supports equivalent copying facilities, provided you maintain
|
273 |
+
clear directions next to the object code saying where to find the
|
274 |
+
Corresponding Source. Regardless of what server hosts the
|
275 |
+
Corresponding Source, you remain obligated to ensure that it is
|
276 |
+
available for as long as needed to satisfy these requirements.
|
277 |
+
|
278 |
+
e) Convey the object code using peer-to-peer transmission, provided
|
279 |
+
you inform other peers where the object code and Corresponding
|
280 |
+
Source of the work are being offered to the general public at no
|
281 |
+
charge under subsection 6d.
|
282 |
+
|
283 |
+
A separable portion of the object code, whose source code is excluded
|
284 |
+
from the Corresponding Source as a System Library, need not be
|
285 |
+
included in conveying the object code work.
|
286 |
+
|
287 |
+
A "User Product" is either (1) a "consumer product", which means any
|
288 |
+
tangible personal property which is normally used for personal, family,
|
289 |
+
or household purposes, or (2) anything designed or sold for incorporation
|
290 |
+
into a dwelling. In determining whether a product is a consumer product,
|
291 |
+
doubtful cases shall be resolved in favor of coverage. For a particular
|
292 |
+
product received by a particular user, "normally used" refers to a
|
293 |
+
typical or common use of that class of product, regardless of the status
|
294 |
+
of the particular user or of the way in which the particular user
|
295 |
+
actually uses, or expects or is expected to use, the product. A product
|
296 |
+
is a consumer product regardless of whether the product has substantial
|
297 |
+
commercial, industrial or non-consumer uses, unless such uses represent
|
298 |
+
the only significant mode of use of the product.
|
299 |
+
|
300 |
+
"Installation Information" for a User Product means any methods,
|
301 |
+
procedures, authorization keys, or other information required to install
|
302 |
+
and execute modified versions of a covered work in that User Product from
|
303 |
+
a modified version of its Corresponding Source. The information must
|
304 |
+
suffice to ensure that the continued functioning of the modified object
|
305 |
+
code is in no case prevented or interfered with solely because
|
306 |
+
modification has been made.
|
307 |
+
|
308 |
+
If you convey an object code work under this section in, or with, or
|
309 |
+
specifically for use in, a User Product, and the conveying occurs as
|
310 |
+
part of a transaction in which the right of possession and use of the
|
311 |
+
User Product is transferred to the recipient in perpetuity or for a
|
312 |
+
fixed term (regardless of how the transaction is characterized), the
|
313 |
+
Corresponding Source conveyed under this section must be accompanied
|
314 |
+
by the Installation Information. But this requirement does not apply
|
315 |
+
if neither you nor any third party retains the ability to install
|
316 |
+
modified object code on the User Product (for example, the work has
|
317 |
+
been installed in ROM).
|
318 |
+
|
319 |
+
The requirement to provide Installation Information does not include a
|
320 |
+
requirement to continue to provide support service, warranty, or updates
|
321 |
+
for a work that has been modified or installed by the recipient, or for
|
322 |
+
the User Product in which it has been modified or installed. Access to a
|
323 |
+
network may be denied when the modification itself materially and
|
324 |
+
adversely affects the operation of the network or violates the rules and
|
325 |
+
protocols for communication across the network.
|
326 |
+
|
327 |
+
Corresponding Source conveyed, and Installation Information provided,
|
328 |
+
in accord with this section must be in a format that is publicly
|
329 |
+
documented (and with an implementation available to the public in
|
330 |
+
source code form), and must require no special password or key for
|
331 |
+
unpacking, reading or copying.
|
332 |
+
|
333 |
+
7. Additional Terms.
|
334 |
+
|
335 |
+
"Additional permissions" are terms that supplement the terms of this
|
336 |
+
License by making exceptions from one or more of its conditions.
|
337 |
+
Additional permissions that are applicable to the entire Program shall
|
338 |
+
be treated as though they were included in this License, to the extent
|
339 |
+
that they are valid under applicable law. If additional permissions
|
340 |
+
apply only to part of the Program, that part may be used separately
|
341 |
+
under those permissions, but the entire Program remains governed by
|
342 |
+
this License without regard to the additional permissions.
|
343 |
+
|
344 |
+
When you convey a copy of a covered work, you may at your option
|
345 |
+
remove any additional permissions from that copy, or from any part of
|
346 |
+
it. (Additional permissions may be written to require their own
|
347 |
+
removal in certain cases when you modify the work.) You may place
|
348 |
+
additional permissions on material, added by you to a covered work,
|
349 |
+
for which you have or can give appropriate copyright permission.
|
350 |
+
|
351 |
+
Notwithstanding any other provision of this License, for material you
|
352 |
+
add to a covered work, you may (if authorized by the copyright holders of
|
353 |
+
that material) supplement the terms of this License with terms:
|
354 |
+
|
355 |
+
a) Disclaiming warranty or limiting liability differently from the
|
356 |
+
terms of sections 15 and 16 of this License; or
|
357 |
+
|
358 |
+
b) Requiring preservation of specified reasonable legal notices or
|
359 |
+
author attributions in that material or in the Appropriate Legal
|
360 |
+
Notices displayed by works containing it; or
|
361 |
+
|
362 |
+
c) Prohibiting misrepresentation of the origin of that material, or
|
363 |
+
requiring that modified versions of such material be marked in
|
364 |
+
reasonable ways as different from the original version; or
|
365 |
+
|
366 |
+
d) Limiting the use for publicity purposes of names of licensors or
|
367 |
+
authors of the material; or
|
368 |
+
|
369 |
+
e) Declining to grant rights under trademark law for use of some
|
370 |
+
trade names, trademarks, or service marks; or
|
371 |
+
|
372 |
+
f) Requiring indemnification of licensors and authors of that
|
373 |
+
material by anyone who conveys the material (or modified versions of
|
374 |
+
it) with contractual assumptions of liability to the recipient, for
|
375 |
+
any liability that these contractual assumptions directly impose on
|
376 |
+
those licensors and authors.
|
377 |
+
|
378 |
+
All other non-permissive additional terms are considered "further
|
379 |
+
restrictions" within the meaning of section 10. If the Program as you
|
380 |
+
received it, or any part of it, contains a notice stating that it is
|
381 |
+
governed by this License along with a term that is a further
|
382 |
+
restriction, you may remove that term. If a license document contains
|
383 |
+
a further restriction but permits relicensing or conveying under this
|
384 |
+
License, you may add to a covered work material governed by the terms
|
385 |
+
of that license document, provided that the further restriction does
|
386 |
+
not survive such relicensing or conveying.
|
387 |
+
|
388 |
+
If you add terms to a covered work in accord with this section, you
|
389 |
+
must place, in the relevant source files, a statement of the
|
390 |
+
additional terms that apply to those files, or a notice indicating
|
391 |
+
where to find the applicable terms.
|
392 |
+
|
393 |
+
Additional terms, permissive or non-permissive, may be stated in the
|
394 |
+
form of a separately written license, or stated as exceptions;
|
395 |
+
the above requirements apply either way.
|
396 |
+
|
397 |
+
8. Termination.
|
398 |
+
|
399 |
+
You may not propagate or modify a covered work except as expressly
|
400 |
+
provided under this License. Any attempt otherwise to propagate or
|
401 |
+
modify it is void, and will automatically terminate your rights under
|
402 |
+
this License (including any patent licenses granted under the third
|
403 |
+
paragraph of section 11).
|
404 |
+
|
405 |
+
However, if you cease all violation of this License, then your
|
406 |
+
license from a particular copyright holder is reinstated (a)
|
407 |
+
provisionally, unless and until the copyright holder explicitly and
|
408 |
+
finally terminates your license, and (b) permanently, if the copyright
|
409 |
+
holder fails to notify you of the violation by some reasonable means
|
410 |
+
prior to 60 days after the cessation.
|
411 |
+
|
412 |
+
Moreover, your license from a particular copyright holder is
|
413 |
+
reinstated permanently if the copyright holder notifies you of the
|
414 |
+
violation by some reasonable means, this is the first time you have
|
415 |
+
received notice of violation of this License (for any work) from that
|
416 |
+
copyright holder, and you cure the violation prior to 30 days after
|
417 |
+
your receipt of the notice.
|
418 |
+
|
419 |
+
Termination of your rights under this section does not terminate the
|
420 |
+
licenses of parties who have received copies or rights from you under
|
421 |
+
this License. If your rights have been terminated and not permanently
|
422 |
+
reinstated, you do not qualify to receive new licenses for the same
|
423 |
+
material under section 10.
|
424 |
+
|
425 |
+
9. Acceptance Not Required for Having Copies.
|
426 |
+
|
427 |
+
You are not required to accept this License in order to receive or
|
428 |
+
run a copy of the Program. Ancillary propagation of a covered work
|
429 |
+
occurring solely as a consequence of using peer-to-peer transmission
|
430 |
+
to receive a copy likewise does not require acceptance. However,
|
431 |
+
nothing other than this License grants you permission to propagate or
|
432 |
+
modify any covered work. These actions infringe copyright if you do
|
433 |
+
not accept this License. Therefore, by modifying or propagating a
|
434 |
+
covered work, you indicate your acceptance of this License to do so.
|
435 |
+
|
436 |
+
10. Automatic Licensing of Downstream Recipients.
|
437 |
+
|
438 |
+
Each time you convey a covered work, the recipient automatically
|
439 |
+
receives a license from the original licensors, to run, modify and
|
440 |
+
propagate that work, subject to this License. You are not responsible
|
441 |
+
for enforcing compliance by third parties with this License.
|
442 |
+
|
443 |
+
An "entity transaction" is a transaction transferring control of an
|
444 |
+
organization, or substantially all assets of one, or subdividing an
|
445 |
+
organization, or merging organizations. If propagation of a covered
|
446 |
+
work results from an entity transaction, each party to that
|
447 |
+
transaction who receives a copy of the work also receives whatever
|
448 |
+
licenses to the work the party's predecessor in interest had or could
|
449 |
+
give under the previous paragraph, plus a right to possession of the
|
450 |
+
Corresponding Source of the work from the predecessor in interest, if
|
451 |
+
the predecessor has it or can get it with reasonable efforts.
|
452 |
+
|
453 |
+
You may not impose any further restrictions on the exercise of the
|
454 |
+
rights granted or affirmed under this License. For example, you may
|
455 |
+
not impose a license fee, royalty, or other charge for exercise of
|
456 |
+
rights granted under this License, and you may not initiate litigation
|
457 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
458 |
+
any patent claim is infringed by making, using, selling, offering for
|
459 |
+
sale, or importing the Program or any portion of it.
|
460 |
+
|
461 |
+
11. Patents.
|
462 |
+
|
463 |
+
A "contributor" is a copyright holder who authorizes use under this
|
464 |
+
License of the Program or a work on which the Program is based. The
|
465 |
+
work thus licensed is called the contributor's "contributor version".
|
466 |
+
|
467 |
+
A contributor's "essential patent claims" are all patent claims
|
468 |
+
owned or controlled by the contributor, whether already acquired or
|
469 |
+
hereafter acquired, that would be infringed by some manner, permitted
|
470 |
+
by this License, of making, using, or selling its contributor version,
|
471 |
+
but do not include claims that would be infringed only as a
|
472 |
+
consequence of further modification of the contributor version. For
|
473 |
+
purposes of this definition, "control" includes the right to grant
|
474 |
+
patent sublicenses in a manner consistent with the requirements of
|
475 |
+
this License.
|
476 |
+
|
477 |
+
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
478 |
+
patent license under the contributor's essential patent claims, to
|
479 |
+
make, use, sell, offer for sale, import and otherwise run, modify and
|
480 |
+
propagate the contents of its contributor version.
|
481 |
+
|
482 |
+
In the following three paragraphs, a "patent license" is any express
|
483 |
+
agreement or commitment, however denominated, not to enforce a patent
|
484 |
+
(such as an express permission to practice a patent or covenant not to
|
485 |
+
sue for patent infringement). To "grant" such a patent license to a
|
486 |
+
party means to make such an agreement or commitment not to enforce a
|
487 |
+
patent against the party.
|
488 |
+
|
489 |
+
If you convey a covered work, knowingly relying on a patent license,
|
490 |
+
and the Corresponding Source of the work is not available for anyone
|
491 |
+
to copy, free of charge and under the terms of this License, through a
|
492 |
+
publicly available network server or other readily accessible means,
|
493 |
+
then you must either (1) cause the Corresponding Source to be so
|
494 |
+
available, or (2) arrange to deprive yourself of the benefit of the
|
495 |
+
patent license for this particular work, or (3) arrange, in a manner
|
496 |
+
consistent with the requirements of this License, to extend the patent
|
497 |
+
license to downstream recipients. "Knowingly relying" means you have
|
498 |
+
actual knowledge that, but for the patent license, your conveying the
|
499 |
+
covered work in a country, or your recipient's use of the covered work
|
500 |
+
in a country, would infringe one or more identifiable patents in that
|
501 |
+
country that you have reason to believe are valid.
|
502 |
+
|
503 |
+
If, pursuant to or in connection with a single transaction or
|
504 |
+
arrangement, you convey, or propagate by procuring conveyance of, a
|
505 |
+
covered work, and grant a patent license to some of the parties
|
506 |
+
receiving the covered work authorizing them to use, propagate, modify
|
507 |
+
or convey a specific copy of the covered work, then the patent license
|
508 |
+
you grant is automatically extended to all recipients of the covered
|
509 |
+
work and works based on it.
|
510 |
+
|
511 |
+
A patent license is "discriminatory" if it does not include within
|
512 |
+
the scope of its coverage, prohibits the exercise of, or is
|
513 |
+
conditioned on the non-exercise of one or more of the rights that are
|
514 |
+
specifically granted under this License. You may not convey a covered
|
515 |
+
work if you are a party to an arrangement with a third party that is
|
516 |
+
in the business of distributing software, under which you make payment
|
517 |
+
to the third party based on the extent of your activity of conveying
|
518 |
+
the work, and under which the third party grants, to any of the
|
519 |
+
parties who would receive the covered work from you, a discriminatory
|
520 |
+
patent license (a) in connection with copies of the covered work
|
521 |
+
conveyed by you (or copies made from those copies), or (b) primarily
|
522 |
+
for and in connection with specific products or compilations that
|
523 |
+
contain the covered work, unless you entered into that arrangement,
|
524 |
+
or that patent license was granted, prior to 28 March 2007.
|
525 |
+
|
526 |
+
Nothing in this License shall be construed as excluding or limiting
|
527 |
+
any implied license or other defenses to infringement that may
|
528 |
+
otherwise be available to you under applicable patent law.
|
529 |
+
|
530 |
+
12. No Surrender of Others' Freedom.
|
531 |
+
|
532 |
+
If conditions are imposed on you (whether by court order, agreement or
|
533 |
+
otherwise) that contradict the conditions of this License, they do not
|
534 |
+
excuse you from the conditions of this License. If you cannot convey a
|
535 |
+
covered work so as to satisfy simultaneously your obligations under this
|
536 |
+
License and any other pertinent obligations, then as a consequence you may
|
537 |
+
not convey it at all. For example, if you agree to terms that obligate you
|
538 |
+
to collect a royalty for further conveying from those to whom you convey
|
539 |
+
the Program, the only way you could satisfy both those terms and this
|
540 |
+
License would be to refrain entirely from conveying the Program.
|
541 |
+
|
542 |
+
13. Remote Network Interaction; Use with the GNU General Public License.
|
543 |
+
|
544 |
+
Notwithstanding any other provision of this License, if you modify the
|
545 |
+
Program, your modified version must prominently offer all users
|
546 |
+
interacting with it remotely through a computer network (if your version
|
547 |
+
supports such interaction) an opportunity to receive the Corresponding
|
548 |
+
Source of your version by providing access to the Corresponding Source
|
549 |
+
from a network server at no charge, through some standard or customary
|
550 |
+
means of facilitating copying of software. This Corresponding Source
|
551 |
+
shall include the Corresponding Source for any work covered by version 3
|
552 |
+
of the GNU General Public License that is incorporated pursuant to the
|
553 |
+
following paragraph.
|
554 |
+
|
555 |
+
Notwithstanding any other provision of this License, you have
|
556 |
+
permission to link or combine any covered work with a work licensed
|
557 |
+
under version 3 of the GNU General Public License into a single
|
558 |
+
combined work, and to convey the resulting work. The terms of this
|
559 |
+
License will continue to apply to the part which is the covered work,
|
560 |
+
but the work with which it is combined will remain governed by version
|
561 |
+
3 of the GNU General Public License.
|
562 |
+
|
563 |
+
14. Revised Versions of this License.
|
564 |
+
|
565 |
+
The Free Software Foundation may publish revised and/or new versions of
|
566 |
+
the GNU Affero General Public License from time to time. Such new versions
|
567 |
+
will be similar in spirit to the present version, but may differ in detail to
|
568 |
+
address new problems or concerns.
|
569 |
+
|
570 |
+
Each version is given a distinguishing version number. If the
|
571 |
+
Program specifies that a certain numbered version of the GNU Affero General
|
572 |
+
Public License "or any later version" applies to it, you have the
|
573 |
+
option of following the terms and conditions either of that numbered
|
574 |
+
version or of any later version published by the Free Software
|
575 |
+
Foundation. If the Program does not specify a version number of the
|
576 |
+
GNU Affero General Public License, you may choose any version ever published
|
577 |
+
by the Free Software Foundation.
|
578 |
+
|
579 |
+
If the Program specifies that a proxy can decide which future
|
580 |
+
versions of the GNU Affero General Public License can be used, that proxy's
|
581 |
+
public statement of acceptance of a version permanently authorizes you
|
582 |
+
to choose that version for the Program.
|
583 |
+
|
584 |
+
Later license versions may give you additional or different
|
585 |
+
permissions. However, no additional obligations are imposed on any
|
586 |
+
author or copyright holder as a result of your choosing to follow a
|
587 |
+
later version.
|
588 |
+
|
589 |
+
15. Disclaimer of Warranty.
|
590 |
+
|
591 |
+
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
592 |
+
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
593 |
+
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
594 |
+
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
595 |
+
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
596 |
+
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
597 |
+
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
598 |
+
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
599 |
+
|
600 |
+
16. Limitation of Liability.
|
601 |
+
|
602 |
+
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
603 |
+
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
604 |
+
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
605 |
+
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
606 |
+
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
607 |
+
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
608 |
+
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
609 |
+
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
610 |
+
SUCH DAMAGES.
|
611 |
+
|
612 |
+
17. Interpretation of Sections 15 and 16.
|
613 |
+
|
614 |
+
If the disclaimer of warranty and limitation of liability provided
|
615 |
+
above cannot be given local legal effect according to their terms,
|
616 |
+
reviewing courts shall apply local law that most closely approximates
|
617 |
+
an absolute waiver of all civil liability in connection with the
|
618 |
+
Program, unless a warranty or assumption of liability accompanies a
|
619 |
+
copy of the Program in return for a fee.
|
620 |
+
|
621 |
+
END OF TERMS AND CONDITIONS
|
622 |
+
|
623 |
+
How to Apply These Terms to Your New Programs
|
624 |
+
|
625 |
+
If you develop a new program, and you want it to be of the greatest
|
626 |
+
possible use to the public, the best way to achieve this is to make it
|
627 |
+
free software which everyone can redistribute and change under these terms.
|
628 |
+
|
629 |
+
To do so, attach the following notices to the program. It is safest
|
630 |
+
to attach them to the start of each source file to most effectively
|
631 |
+
state the exclusion of warranty; and each file should have at least
|
632 |
+
the "copyright" line and a pointer to where the full notice is found.
|
633 |
+
|
634 |
+
<one line to give the program's name and a brief idea of what it does.>
|
635 |
+
Copyright (C) <year> <name of author>
|
636 |
+
|
637 |
+
This program is free software: you can redistribute it and/or modify
|
638 |
+
it under the terms of the GNU Affero General Public License as published by
|
639 |
+
the Free Software Foundation, either version 3 of the License, or
|
640 |
+
(at your option) any later version.
|
641 |
+
|
642 |
+
This program is distributed in the hope that it will be useful,
|
643 |
+
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
644 |
+
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
645 |
+
GNU Affero General Public License for more details.
|
646 |
+
|
647 |
+
You should have received a copy of the GNU Affero General Public License
|
648 |
+
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
649 |
+
|
650 |
+
Also add information on how to contact you by electronic and paper mail.
|
651 |
+
|
652 |
+
If your software can interact with users remotely through a computer
|
653 |
+
network, you should also make sure that it provides a way for users to
|
654 |
+
get its source. For example, if your program is a web application, its
|
655 |
+
interface could display a "Source" link that leads users to an archive
|
656 |
+
of the code. There are many ways you could offer source, and different
|
657 |
+
solutions will be better for different programs; see section 13 for the
|
658 |
+
specific requirements.
|
659 |
+
|
660 |
+
You should also get your employer (if you work as a programmer) or school,
|
661 |
+
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
662 |
+
For more information on this, and how to apply and follow the GNU AGPL, see
|
663 |
+
<https://www.gnu.org/licenses/>.
|
README.md
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Stable Diffusion web UI-UX
|
2 |
+
Not just a browser interface based on Gradio library for Stable Diffusion.
|
3 |
+
A pixel perfect design, mobile friendly, customizable interface that adds accessibility, ease of use and extended functionallity to the stable diffusion web ui.
|
4 |
+
Enjoy!
|
5 |
+
|
6 |
+
|
7 |
+
Default theme
|
8 |
+
|
9 |
+
![anapnoe_uiux](https://user-images.githubusercontent.com/124302297/227973574-6003142d-0c7c-41c6-9966-0792a94549e9.png)
|
10 |
+
|
11 |
+
## Features of ui-ux
|
12 |
+
- resizable viewport
|
13 |
+
- switchable viewports (DoubleClick on the split handler to swap views) option in settings for default position
|
14 |
+
- mobile navigation
|
15 |
+
- top header tabs (option setting)
|
16 |
+
- hidden tabs (option setting) no need to restart this is a different implementation
|
17 |
+
- drag and drop reordable quick settings offcanvas aside view
|
18 |
+
- drag and drop images to txt2img and img2img and import generation info parameters along with a preview image
|
19 |
+
- ignore - remove overrides when import [multiselect] (option setting)
|
20 |
+
- resizable cards for extra networks and number of rows (option setting)
|
21 |
+
- lazy loading alternative offcanvas aside view for extra networks (option setting)
|
22 |
+
- live preview image fit method (option setting)
|
23 |
+
- generated image fit method (option setting)
|
24 |
+
- max resolution output for txt2img and img2img (option setting)
|
25 |
+
- performant dispatch for gradio's range slider and input number field issue: https://github.com/gradio-app/gradio/issues/3204 (option setting) latest update uses only one instance clone to mediate for the release event
|
26 |
+
- ticks input range sliders (option setting)
|
27 |
+
- pacman preloader unified colors on reload ui
|
28 |
+
- frame border animation when generating images
|
29 |
+
- progress bar on top of the page always visible (when scroll for mobile)
|
30 |
+
- remix icons
|
31 |
+
- style theme configurator extension to customize every aspect of theme in real time with cool global functions to change the hue / saturation / brightness or invert the theme colors
|
32 |
+
- pan and zoom in out functionality for sketch, inpaint, inpaint sketch
|
33 |
+
- fullscreen support for sketch, inpaint, inpaint sketch
|
34 |
+
- better lightbox with zoom in-out mobile gestures support etc..
|
35 |
+
|
36 |
+
## TODO
|
37 |
+
- small arrows next to icons sent to inpaint, extras, img2img etc
|
38 |
+
- component gallery navigate to previous generations inside the txt2img, img2img interface
|
39 |
+
- and auto load the current generation settings
|
40 |
+
- credits/about page display all 300+ contributors so far inside the UI
|
41 |
+
|
42 |
+
Quick Settings aside off-canvas view - drag and drop to custom sort your settings
|
43 |
+
|
44 |
+
![anapnoe_uiux_quicksettings](https://user-images.githubusercontent.com/124302297/227967695-f8bb01b5-5cc9-4238-80dd-06e261378d6e.png)
|
45 |
+
|
46 |
+
|
47 |
+
Extra Networks aside off-canvas view
|
48 |
+
|
49 |
+
![anapnoe_uiux_extra_networks](https://user-images.githubusercontent.com/124302297/227968001-20eab8f5-da91-4a11-9fe0-230fec4ba720.png)
|
50 |
+
|
51 |
+
|
52 |
+
Detail img2img sketch view
|
53 |
+
|
54 |
+
![anapnoe_uiux_sketch](https://user-images.githubusercontent.com/124302297/227973727-084da8e0-931a-4c62-ab73-39e988fd4523.png)
|
55 |
+
|
56 |
+
|
57 |
+
Theme Configurator - aside off-canvas view
|
58 |
+
|
59 |
+
![anapnoe_uiux_theme_config](https://user-images.githubusercontent.com/124302297/227967844-45063edb-eb40-4224-9666-f506d21d7780.png)
|
60 |
+
|
61 |
+
|
62 |
+
Mobile 395px width
|
63 |
+
|
64 |
+
![anapnoe_uiux_mobile](https://user-images.githubusercontent.com/124302297/227987709-36231d30-e6da-424a-8930-cc0c55a0b979.png)
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
## Features
|
69 |
+
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
|
70 |
+
- Original txt2img and img2img modes
|
71 |
+
- One click install and run script (but you still must install python and git)
|
72 |
+
- Outpainting
|
73 |
+
- Inpainting
|
74 |
+
- Color Sketch
|
75 |
+
- Prompt Matrix
|
76 |
+
- Stable Diffusion Upscale
|
77 |
+
- Attention, specify parts of text that the model should pay more attention to
|
78 |
+
- a man in a `((tuxedo))` - will pay more attention to tuxedo
|
79 |
+
- a man in a `(tuxedo:1.21)` - alternative syntax
|
80 |
+
- select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user)
|
81 |
+
- Loopback, run img2img processing multiple times
|
82 |
+
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
|
83 |
+
- Textual Inversion
|
84 |
+
- have as many embeddings as you want and use any names you like for them
|
85 |
+
- use multiple embeddings with different numbers of vectors per token
|
86 |
+
- works with half precision floating point numbers
|
87 |
+
- train embeddings on 8GB (also reports of 6GB working)
|
88 |
+
- Extras tab with:
|
89 |
+
- GFPGAN, neural network that fixes faces
|
90 |
+
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
91 |
+
- RealESRGAN, neural network upscaler
|
92 |
+
- ESRGAN, neural network upscaler with a lot of third party models
|
93 |
+
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
|
94 |
+
- LDSR, Latent diffusion super resolution upscaling
|
95 |
+
- Resizing aspect ratio options
|
96 |
+
- Sampling method selection
|
97 |
+
- Adjust sampler eta values (noise multiplier)
|
98 |
+
- More advanced noise setting options
|
99 |
+
- Interrupt processing at any time
|
100 |
+
- 4GB video card support (also reports of 2GB working)
|
101 |
+
- Correct seeds for batches
|
102 |
+
- Live prompt token length validation
|
103 |
+
- Generation parameters
|
104 |
+
- parameters you used to generate images are saved with that image
|
105 |
+
- in PNG chunks for PNG, in EXIF for JPEG
|
106 |
+
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
|
107 |
+
- can be disabled in settings
|
108 |
+
- drag and drop an image/text-parameters to promptbox
|
109 |
+
- Read Generation Parameters Button, loads parameters in promptbox to UI
|
110 |
+
- Settings page
|
111 |
+
- Running arbitrary python code from UI (must run with --allow-code to enable)
|
112 |
+
- Mouseover hints for most UI elements
|
113 |
+
- Possible to change defaults/mix/max/step values for UI elements via text config
|
114 |
+
- Tiling support, a checkbox to create images that can be tiled like textures
|
115 |
+
- Progress bar and live image generation preview
|
116 |
+
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement
|
117 |
+
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
|
118 |
+
- Styles, a way to save part of prompt and easily apply them via dropdown later
|
119 |
+
- Variations, a way to generate same image but with tiny differences
|
120 |
+
- Seed resizing, a way to generate same image but at slightly different resolution
|
121 |
+
- CLIP interrogator, a button that tries to guess prompt from an image
|
122 |
+
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
|
123 |
+
- Batch Processing, process a group of files using img2img
|
124 |
+
- Img2img Alternative, reverse Euler method of cross attention control
|
125 |
+
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
|
126 |
+
- Reloading checkpoints on the fly
|
127 |
+
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
|
128 |
+
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
|
129 |
+
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
|
130 |
+
- separate prompts using uppercase `AND`
|
131 |
+
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
132 |
+
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
133 |
+
- DeepDanbooru integration, creates danbooru style tags for anime prompts
|
134 |
+
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
|
135 |
+
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
|
136 |
+
- Generate forever option
|
137 |
+
- Training tab
|
138 |
+
- hypernetworks and embeddings options
|
139 |
+
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
|
140 |
+
- Clip skip
|
141 |
+
- Hypernetworks
|
142 |
+
- Loras (same as Hypernetworks but more pretty)
|
143 |
+
- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt.
|
144 |
+
- Can select to load a different VAE from settings screen
|
145 |
+
- Estimated completion time in progress bar
|
146 |
+
- API
|
147 |
+
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
|
148 |
+
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
|
149 |
+
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
|
150 |
+
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
|
151 |
+
- Now without any bad letters!
|
152 |
+
- Load checkpoints in safetensors format
|
153 |
+
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
|
154 |
+
- Now with a license!
|
155 |
+
- Reorder elements in the UI from settings screen
|
156 |
+
-
|
157 |
+
|
158 |
+
## Installation and Running
|
159 |
+
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
160 |
+
|
161 |
+
Alternatively, use online services (like Google Colab):
|
162 |
+
|
163 |
+
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
|
164 |
+
|
165 |
+
### Installation on Windows
|
166 |
+
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
|
167 |
+
2. Install [git](https://git-scm.com/download/win).
|
168 |
+
3. Download the stable-diffusion-webui-ux repository, for example by running `git clone https://github.com/anapnoe/stable-diffusion-webui-ux.git`.
|
169 |
+
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
|
170 |
+
|
171 |
+
### Installation on Linux
|
172 |
+
1. Install the dependencies:
|
173 |
+
```bash
|
174 |
+
# Debian-based:
|
175 |
+
sudo apt install wget git python3 python3-venv
|
176 |
+
# Red Hat-based:
|
177 |
+
sudo dnf install wget git python3
|
178 |
+
# Arch-based:
|
179 |
+
sudo pacman -S wget git python3
|
180 |
+
```
|
181 |
+
2. Navigate to the directory you would like the webui to be installed and execute the following command:
|
182 |
+
```bash
|
183 |
+
bash <(wget -qO- https://raw.githubusercontent.com/anapnoe/stable-diffusion-webui-ux/master/webui.sh)
|
184 |
+
```
|
185 |
+
3. Run `webui.sh`.
|
186 |
+
4. Check `webui-user.sh` for options.
|
187 |
+
### Installation on Apple Silicon
|
188 |
+
|
189 |
+
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
|
190 |
+
and replace the path in step 3 with `git clone https://github.com/anapnoe/stable-diffusion-webui-ux`
|
191 |
+
|
192 |
+
## Contributing
|
193 |
+
Here's how to add code to the original repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
|
194 |
+
|
195 |
+
## Documentation
|
196 |
+
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
|
197 |
+
|
198 |
+
## Credits
|
199 |
+
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
|
200 |
+
|
201 |
+
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
202 |
+
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
|
203 |
+
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
|
204 |
+
- CodeFormer - https://github.com/sczhou/CodeFormer
|
205 |
+
- ESRGAN - https://github.com/xinntao/ESRGAN
|
206 |
+
- SwinIR - https://github.com/JingyunLiang/SwinIR
|
207 |
+
- Swin2SR - https://github.com/mv-lab/swin2sr
|
208 |
+
- LDSR - https://github.com/Hafiidz/latent-diffusion
|
209 |
+
- MiDaS - https://github.com/isl-org/MiDaS
|
210 |
+
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
|
211 |
+
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
|
212 |
+
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
|
213 |
+
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
|
214 |
+
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
|
215 |
+
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
216 |
+
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
217 |
+
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
218 |
+
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
|
219 |
+
- xformers - https://github.com/facebookresearch/xformers
|
220 |
+
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
|
221 |
+
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
|
222 |
+
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
|
223 |
+
- Security advice - RyotaK
|
224 |
+
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
|
225 |
+
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
|
226 |
+
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
227 |
+
- (You)
|
configs/alt-diffusion-inference.yaml
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-04
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 10000 ]
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: modules.xlmr.BertSeriesModelWithTransformation
|
71 |
+
params:
|
72 |
+
name: "XLMR-Large"
|
configs/instruct-pix2pix.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
|
2 |
+
# See more details in LICENSE.
|
3 |
+
|
4 |
+
model:
|
5 |
+
base_learning_rate: 1.0e-04
|
6 |
+
target: modules.models.diffusion.ddpm_edit.LatentDiffusion
|
7 |
+
params:
|
8 |
+
linear_start: 0.00085
|
9 |
+
linear_end: 0.0120
|
10 |
+
num_timesteps_cond: 1
|
11 |
+
log_every_t: 200
|
12 |
+
timesteps: 1000
|
13 |
+
first_stage_key: edited
|
14 |
+
cond_stage_key: edit
|
15 |
+
# image_size: 64
|
16 |
+
# image_size: 32
|
17 |
+
image_size: 16
|
18 |
+
channels: 4
|
19 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
20 |
+
conditioning_key: hybrid
|
21 |
+
monitor: val/loss_simple_ema
|
22 |
+
scale_factor: 0.18215
|
23 |
+
use_ema: false
|
24 |
+
|
25 |
+
scheduler_config: # 10000 warmup steps
|
26 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
27 |
+
params:
|
28 |
+
warm_up_steps: [ 0 ]
|
29 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
30 |
+
f_start: [ 1.e-6 ]
|
31 |
+
f_max: [ 1. ]
|
32 |
+
f_min: [ 1. ]
|
33 |
+
|
34 |
+
unet_config:
|
35 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
36 |
+
params:
|
37 |
+
image_size: 32 # unused
|
38 |
+
in_channels: 8
|
39 |
+
out_channels: 4
|
40 |
+
model_channels: 320
|
41 |
+
attention_resolutions: [ 4, 2, 1 ]
|
42 |
+
num_res_blocks: 2
|
43 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
44 |
+
num_heads: 8
|
45 |
+
use_spatial_transformer: True
|
46 |
+
transformer_depth: 1
|
47 |
+
context_dim: 768
|
48 |
+
use_checkpoint: True
|
49 |
+
legacy: False
|
50 |
+
|
51 |
+
first_stage_config:
|
52 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
53 |
+
params:
|
54 |
+
embed_dim: 4
|
55 |
+
monitor: val/rec_loss
|
56 |
+
ddconfig:
|
57 |
+
double_z: true
|
58 |
+
z_channels: 4
|
59 |
+
resolution: 256
|
60 |
+
in_channels: 3
|
61 |
+
out_ch: 3
|
62 |
+
ch: 128
|
63 |
+
ch_mult:
|
64 |
+
- 1
|
65 |
+
- 2
|
66 |
+
- 4
|
67 |
+
- 4
|
68 |
+
num_res_blocks: 2
|
69 |
+
attn_resolutions: []
|
70 |
+
dropout: 0.0
|
71 |
+
lossconfig:
|
72 |
+
target: torch.nn.Identity
|
73 |
+
|
74 |
+
cond_stage_config:
|
75 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
76 |
+
|
77 |
+
data:
|
78 |
+
target: main.DataModuleFromConfig
|
79 |
+
params:
|
80 |
+
batch_size: 128
|
81 |
+
num_workers: 1
|
82 |
+
wrap: false
|
83 |
+
validation:
|
84 |
+
target: edit_dataset.EditDataset
|
85 |
+
params:
|
86 |
+
path: data/clip-filtered-dataset
|
87 |
+
cache_dir: data/
|
88 |
+
cache_name: data_10k
|
89 |
+
split: val
|
90 |
+
min_text_sim: 0.2
|
91 |
+
min_image_sim: 0.75
|
92 |
+
min_direction_sim: 0.2
|
93 |
+
max_samples_per_prompt: 1
|
94 |
+
min_resize_res: 512
|
95 |
+
max_resize_res: 512
|
96 |
+
crop_res: 512
|
97 |
+
output_as_edit: False
|
98 |
+
real_input: True
|
configs/v1-inference.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-04
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
use_ema: False
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 10000 ]
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 4
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
configs/v1-inpainting-inference.yaml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 7.5e-05
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.00085
|
6 |
+
linear_end: 0.0120
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: "jpg"
|
11 |
+
cond_stage_key: "txt"
|
12 |
+
image_size: 64
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
+
conditioning_key: hybrid # important
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
scale_factor: 0.18215
|
18 |
+
finetune_keys: null
|
19 |
+
|
20 |
+
scheduler_config: # 10000 warmup steps
|
21 |
+
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
+
params:
|
23 |
+
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
24 |
+
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
+
f_start: [ 1.e-6 ]
|
26 |
+
f_max: [ 1. ]
|
27 |
+
f_min: [ 1. ]
|
28 |
+
|
29 |
+
unet_config:
|
30 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
+
params:
|
32 |
+
image_size: 32 # unused
|
33 |
+
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
34 |
+
out_channels: 4
|
35 |
+
model_channels: 320
|
36 |
+
attention_resolutions: [ 4, 2, 1 ]
|
37 |
+
num_res_blocks: 2
|
38 |
+
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
+
num_heads: 8
|
40 |
+
use_spatial_transformer: True
|
41 |
+
transformer_depth: 1
|
42 |
+
context_dim: 768
|
43 |
+
use_checkpoint: True
|
44 |
+
legacy: False
|
45 |
+
|
46 |
+
first_stage_config:
|
47 |
+
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
+
params:
|
49 |
+
embed_dim: 4
|
50 |
+
monitor: val/rec_loss
|
51 |
+
ddconfig:
|
52 |
+
double_z: true
|
53 |
+
z_channels: 4
|
54 |
+
resolution: 256
|
55 |
+
in_channels: 3
|
56 |
+
out_ch: 3
|
57 |
+
ch: 128
|
58 |
+
ch_mult:
|
59 |
+
- 1
|
60 |
+
- 2
|
61 |
+
- 4
|
62 |
+
- 4
|
63 |
+
num_res_blocks: 2
|
64 |
+
attn_resolutions: []
|
65 |
+
dropout: 0.0
|
66 |
+
lossconfig:
|
67 |
+
target: torch.nn.Identity
|
68 |
+
|
69 |
+
cond_stage_config:
|
70 |
+
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
environment-wsl2.yaml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: automatic
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- defaults
|
5 |
+
dependencies:
|
6 |
+
- python=3.10
|
7 |
+
- pip=23.0
|
8 |
+
- cudatoolkit=11.8
|
9 |
+
- pytorch=2.0
|
10 |
+
- torchvision=0.15
|
11 |
+
- numpy=1.23
|
extensions-builtin/LDSR/ldsr_model_arch.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gc
|
3 |
+
import time
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
from PIL import Image
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
from omegaconf import OmegaConf
|
11 |
+
import safetensors.torch
|
12 |
+
|
13 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
14 |
+
from ldm.util import instantiate_from_config, ismap
|
15 |
+
from modules import shared, sd_hijack
|
16 |
+
|
17 |
+
cached_ldsr_model: torch.nn.Module = None
|
18 |
+
|
19 |
+
|
20 |
+
# Create LDSR Class
|
21 |
+
class LDSR:
|
22 |
+
def load_model_from_config(self, half_attention):
|
23 |
+
global cached_ldsr_model
|
24 |
+
|
25 |
+
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
|
26 |
+
print("Loading model from cache")
|
27 |
+
model: torch.nn.Module = cached_ldsr_model
|
28 |
+
else:
|
29 |
+
print(f"Loading model from {self.modelPath}")
|
30 |
+
_, extension = os.path.splitext(self.modelPath)
|
31 |
+
if extension.lower() == ".safetensors":
|
32 |
+
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
|
33 |
+
else:
|
34 |
+
pl_sd = torch.load(self.modelPath, map_location="cpu")
|
35 |
+
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
|
36 |
+
config = OmegaConf.load(self.yamlPath)
|
37 |
+
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
|
38 |
+
model: torch.nn.Module = instantiate_from_config(config.model)
|
39 |
+
model.load_state_dict(sd, strict=False)
|
40 |
+
model = model.to(shared.device)
|
41 |
+
if half_attention:
|
42 |
+
model = model.half()
|
43 |
+
if shared.cmd_opts.opt_channelslast:
|
44 |
+
model = model.to(memory_format=torch.channels_last)
|
45 |
+
|
46 |
+
sd_hijack.model_hijack.hijack(model) # apply optimization
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
if shared.opts.ldsr_cached:
|
50 |
+
cached_ldsr_model = model
|
51 |
+
|
52 |
+
return {"model": model}
|
53 |
+
|
54 |
+
def __init__(self, model_path, yaml_path):
|
55 |
+
self.modelPath = model_path
|
56 |
+
self.yamlPath = yaml_path
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def run(model, selected_path, custom_steps, eta):
|
60 |
+
example = get_cond(selected_path)
|
61 |
+
|
62 |
+
n_runs = 1
|
63 |
+
guider = None
|
64 |
+
ckwargs = None
|
65 |
+
ddim_use_x0_pred = False
|
66 |
+
temperature = 1.
|
67 |
+
eta = eta
|
68 |
+
custom_shape = None
|
69 |
+
|
70 |
+
height, width = example["image"].shape[1:3]
|
71 |
+
split_input = height >= 128 and width >= 128
|
72 |
+
|
73 |
+
if split_input:
|
74 |
+
ks = 128
|
75 |
+
stride = 64
|
76 |
+
vqf = 4 #
|
77 |
+
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride),
|
78 |
+
"vqf": vqf,
|
79 |
+
"patch_distributed_vq": True,
|
80 |
+
"tie_braker": False,
|
81 |
+
"clip_max_weight": 0.5,
|
82 |
+
"clip_min_weight": 0.01,
|
83 |
+
"clip_max_tie_weight": 0.5,
|
84 |
+
"clip_min_tie_weight": 0.01}
|
85 |
+
else:
|
86 |
+
if hasattr(model, "split_input_params"):
|
87 |
+
delattr(model, "split_input_params")
|
88 |
+
|
89 |
+
x_t = None
|
90 |
+
logs = None
|
91 |
+
for _ in range(n_runs):
|
92 |
+
if custom_shape is not None:
|
93 |
+
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device)
|
94 |
+
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0])
|
95 |
+
|
96 |
+
logs = make_convolutional_sample(example, model,
|
97 |
+
custom_steps=custom_steps,
|
98 |
+
eta=eta, quantize_x0=False,
|
99 |
+
custom_shape=custom_shape,
|
100 |
+
temperature=temperature, noise_dropout=0.,
|
101 |
+
corrector=guider, corrector_kwargs=ckwargs, x_T=x_t,
|
102 |
+
ddim_use_x0_pred=ddim_use_x0_pred
|
103 |
+
)
|
104 |
+
return logs
|
105 |
+
|
106 |
+
def super_resolution(self, image, steps=100, target_scale=2, half_attention=False):
|
107 |
+
model = self.load_model_from_config(half_attention)
|
108 |
+
|
109 |
+
# Run settings
|
110 |
+
diffusion_steps = int(steps)
|
111 |
+
eta = 1.0
|
112 |
+
|
113 |
+
|
114 |
+
gc.collect()
|
115 |
+
if torch.cuda.is_available:
|
116 |
+
torch.cuda.empty_cache()
|
117 |
+
|
118 |
+
im_og = image
|
119 |
+
width_og, height_og = im_og.size
|
120 |
+
# If we can adjust the max upscale size, then the 4 below should be our variable
|
121 |
+
down_sample_rate = target_scale / 4
|
122 |
+
wd = width_og * down_sample_rate
|
123 |
+
hd = height_og * down_sample_rate
|
124 |
+
width_downsampled_pre = int(np.ceil(wd))
|
125 |
+
height_downsampled_pre = int(np.ceil(hd))
|
126 |
+
|
127 |
+
if down_sample_rate != 1:
|
128 |
+
print(
|
129 |
+
f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]')
|
130 |
+
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
|
131 |
+
else:
|
132 |
+
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
|
133 |
+
|
134 |
+
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
|
135 |
+
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
|
136 |
+
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
|
137 |
+
|
138 |
+
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
|
139 |
+
|
140 |
+
sample = logs["sample"]
|
141 |
+
sample = sample.detach().cpu()
|
142 |
+
sample = torch.clamp(sample, -1., 1.)
|
143 |
+
sample = (sample + 1.) / 2. * 255
|
144 |
+
sample = sample.numpy().astype(np.uint8)
|
145 |
+
sample = np.transpose(sample, (0, 2, 3, 1))
|
146 |
+
a = Image.fromarray(sample[0])
|
147 |
+
|
148 |
+
# remove padding
|
149 |
+
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
|
150 |
+
|
151 |
+
del model
|
152 |
+
gc.collect()
|
153 |
+
if torch.cuda.is_available:
|
154 |
+
torch.cuda.empty_cache()
|
155 |
+
|
156 |
+
return a
|
157 |
+
|
158 |
+
|
159 |
+
def get_cond(selected_path):
|
160 |
+
example = {}
|
161 |
+
up_f = 4
|
162 |
+
c = selected_path.convert('RGB')
|
163 |
+
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0)
|
164 |
+
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]],
|
165 |
+
antialias=True)
|
166 |
+
c_up = rearrange(c_up, '1 c h w -> 1 h w c')
|
167 |
+
c = rearrange(c, '1 c h w -> 1 h w c')
|
168 |
+
c = 2. * c - 1.
|
169 |
+
|
170 |
+
c = c.to(shared.device)
|
171 |
+
example["LR_image"] = c
|
172 |
+
example["image"] = c_up
|
173 |
+
|
174 |
+
return example
|
175 |
+
|
176 |
+
|
177 |
+
@torch.no_grad()
|
178 |
+
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None,
|
179 |
+
mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None,
|
180 |
+
corrector_kwargs=None, x_t=None
|
181 |
+
):
|
182 |
+
ddim = DDIMSampler(model)
|
183 |
+
bs = shape[0]
|
184 |
+
shape = shape[1:]
|
185 |
+
print(f"Sampling with eta = {eta}; steps: {steps}")
|
186 |
+
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback,
|
187 |
+
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta,
|
188 |
+
mask=mask, x0=x0, temperature=temperature, verbose=False,
|
189 |
+
score_corrector=score_corrector,
|
190 |
+
corrector_kwargs=corrector_kwargs, x_t=x_t)
|
191 |
+
|
192 |
+
return samples, intermediates
|
193 |
+
|
194 |
+
|
195 |
+
@torch.no_grad()
|
196 |
+
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None,
|
197 |
+
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False):
|
198 |
+
log = {}
|
199 |
+
|
200 |
+
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key,
|
201 |
+
return_first_stage_outputs=True,
|
202 |
+
force_c_encode=not (hasattr(model, 'split_input_params')
|
203 |
+
and model.cond_stage_key == 'coordinates_bbox'),
|
204 |
+
return_original_cond=True)
|
205 |
+
|
206 |
+
if custom_shape is not None:
|
207 |
+
z = torch.randn(custom_shape)
|
208 |
+
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}")
|
209 |
+
|
210 |
+
z0 = None
|
211 |
+
|
212 |
+
log["input"] = x
|
213 |
+
log["reconstruction"] = xrec
|
214 |
+
|
215 |
+
if ismap(xc):
|
216 |
+
log["original_conditioning"] = model.to_rgb(xc)
|
217 |
+
if hasattr(model, 'cond_stage_key'):
|
218 |
+
log[model.cond_stage_key] = model.to_rgb(xc)
|
219 |
+
|
220 |
+
else:
|
221 |
+
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x)
|
222 |
+
if model.cond_stage_model:
|
223 |
+
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x)
|
224 |
+
if model.cond_stage_key == 'class_label':
|
225 |
+
log[model.cond_stage_key] = xc[model.cond_stage_key]
|
226 |
+
|
227 |
+
with model.ema_scope("Plotting"):
|
228 |
+
t0 = time.time()
|
229 |
+
|
230 |
+
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape,
|
231 |
+
eta=eta,
|
232 |
+
quantize_x0=quantize_x0, mask=None, x0=z0,
|
233 |
+
temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs,
|
234 |
+
x_t=x_T)
|
235 |
+
t1 = time.time()
|
236 |
+
|
237 |
+
if ddim_use_x0_pred:
|
238 |
+
sample = intermediates['pred_x0'][-1]
|
239 |
+
|
240 |
+
x_sample = model.decode_first_stage(sample)
|
241 |
+
|
242 |
+
try:
|
243 |
+
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True)
|
244 |
+
log["sample_noquant"] = x_sample_noquant
|
245 |
+
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample)
|
246 |
+
except Exception:
|
247 |
+
pass
|
248 |
+
|
249 |
+
log["sample"] = x_sample
|
250 |
+
log["time"] = t1 - t0
|
251 |
+
|
252 |
+
return log
|
extensions-builtin/LDSR/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))
|
extensions-builtin/LDSR/scripts/ldsr_model.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from basicsr.utils.download_util import load_file_from_url
|
4 |
+
|
5 |
+
from modules.upscaler import Upscaler, UpscalerData
|
6 |
+
from ldsr_model_arch import LDSR
|
7 |
+
from modules import shared, script_callbacks, errors
|
8 |
+
import sd_hijack_autoencoder # noqa: F401
|
9 |
+
import sd_hijack_ddpm_v1 # noqa: F401
|
10 |
+
|
11 |
+
|
12 |
+
class UpscalerLDSR(Upscaler):
|
13 |
+
def __init__(self, user_path):
|
14 |
+
self.name = "LDSR"
|
15 |
+
self.user_path = user_path
|
16 |
+
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
|
17 |
+
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
|
18 |
+
super().__init__()
|
19 |
+
scaler_data = UpscalerData("LDSR", None, self)
|
20 |
+
self.scalers = [scaler_data]
|
21 |
+
|
22 |
+
def load_model(self, path: str):
|
23 |
+
# Remove incorrect project.yaml file if too big
|
24 |
+
yaml_path = os.path.join(self.model_path, "project.yaml")
|
25 |
+
old_model_path = os.path.join(self.model_path, "model.pth")
|
26 |
+
new_model_path = os.path.join(self.model_path, "model.ckpt")
|
27 |
+
|
28 |
+
local_model_paths = self.find_models(ext_filter=[".ckpt", ".safetensors"])
|
29 |
+
local_ckpt_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.ckpt")]), None)
|
30 |
+
local_safetensors_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("model.safetensors")]), None)
|
31 |
+
local_yaml_path = next(iter([local_model for local_model in local_model_paths if local_model.endswith("project.yaml")]), None)
|
32 |
+
|
33 |
+
if os.path.exists(yaml_path):
|
34 |
+
statinfo = os.stat(yaml_path)
|
35 |
+
if statinfo.st_size >= 10485760:
|
36 |
+
print("Removing invalid LDSR YAML file.")
|
37 |
+
os.remove(yaml_path)
|
38 |
+
|
39 |
+
if os.path.exists(old_model_path):
|
40 |
+
print("Renaming model from model.pth to model.ckpt")
|
41 |
+
os.rename(old_model_path, new_model_path)
|
42 |
+
|
43 |
+
if local_safetensors_path is not None and os.path.exists(local_safetensors_path):
|
44 |
+
model = local_safetensors_path
|
45 |
+
else:
|
46 |
+
model = local_ckpt_path if local_ckpt_path is not None else load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="model.ckpt", progress=True)
|
47 |
+
|
48 |
+
yaml = local_yaml_path if local_yaml_path is not None else load_file_from_url(url=self.yaml_url, model_dir=self.model_download_path, file_name="project.yaml", progress=True)
|
49 |
+
|
50 |
+
try:
|
51 |
+
return LDSR(model, yaml)
|
52 |
+
except Exception:
|
53 |
+
errors.report("Error importing LDSR", exc_info=True)
|
54 |
+
return None
|
55 |
+
|
56 |
+
def do_upscale(self, img, path):
|
57 |
+
ldsr = self.load_model(path)
|
58 |
+
if ldsr is None:
|
59 |
+
print("NO LDSR!")
|
60 |
+
return img
|
61 |
+
ddim_steps = shared.opts.ldsr_steps
|
62 |
+
return ldsr.super_resolution(img, ddim_steps, self.scale)
|
63 |
+
|
64 |
+
|
65 |
+
def on_ui_settings():
|
66 |
+
import gradio as gr
|
67 |
+
|
68 |
+
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
|
69 |
+
shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
|
70 |
+
|
71 |
+
|
72 |
+
script_callbacks.on_ui_settings(on_ui_settings)
|
extensions-builtin/LDSR/sd_hijack_autoencoder.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
|
2 |
+
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
|
3 |
+
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from contextlib import contextmanager
|
9 |
+
|
10 |
+
from torch.optim.lr_scheduler import LambdaLR
|
11 |
+
|
12 |
+
from ldm.modules.ema import LitEma
|
13 |
+
from vqvae_quantize import VectorQuantizer2 as VectorQuantizer
|
14 |
+
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
15 |
+
from ldm.util import instantiate_from_config
|
16 |
+
|
17 |
+
import ldm.models.autoencoder
|
18 |
+
from packaging import version
|
19 |
+
|
20 |
+
class VQModel(pl.LightningModule):
|
21 |
+
def __init__(self,
|
22 |
+
ddconfig,
|
23 |
+
lossconfig,
|
24 |
+
n_embed,
|
25 |
+
embed_dim,
|
26 |
+
ckpt_path=None,
|
27 |
+
ignore_keys=None,
|
28 |
+
image_key="image",
|
29 |
+
colorize_nlabels=None,
|
30 |
+
monitor=None,
|
31 |
+
batch_resize_range=None,
|
32 |
+
scheduler_config=None,
|
33 |
+
lr_g_factor=1.0,
|
34 |
+
remap=None,
|
35 |
+
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
36 |
+
use_ema=False
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
self.embed_dim = embed_dim
|
40 |
+
self.n_embed = n_embed
|
41 |
+
self.image_key = image_key
|
42 |
+
self.encoder = Encoder(**ddconfig)
|
43 |
+
self.decoder = Decoder(**ddconfig)
|
44 |
+
self.loss = instantiate_from_config(lossconfig)
|
45 |
+
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
46 |
+
remap=remap,
|
47 |
+
sane_index_shape=sane_index_shape)
|
48 |
+
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
49 |
+
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
50 |
+
if colorize_nlabels is not None:
|
51 |
+
assert type(colorize_nlabels)==int
|
52 |
+
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
53 |
+
if monitor is not None:
|
54 |
+
self.monitor = monitor
|
55 |
+
self.batch_resize_range = batch_resize_range
|
56 |
+
if self.batch_resize_range is not None:
|
57 |
+
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
58 |
+
|
59 |
+
self.use_ema = use_ema
|
60 |
+
if self.use_ema:
|
61 |
+
self.model_ema = LitEma(self)
|
62 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
63 |
+
|
64 |
+
if ckpt_path is not None:
|
65 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [])
|
66 |
+
self.scheduler_config = scheduler_config
|
67 |
+
self.lr_g_factor = lr_g_factor
|
68 |
+
|
69 |
+
@contextmanager
|
70 |
+
def ema_scope(self, context=None):
|
71 |
+
if self.use_ema:
|
72 |
+
self.model_ema.store(self.parameters())
|
73 |
+
self.model_ema.copy_to(self)
|
74 |
+
if context is not None:
|
75 |
+
print(f"{context}: Switched to EMA weights")
|
76 |
+
try:
|
77 |
+
yield None
|
78 |
+
finally:
|
79 |
+
if self.use_ema:
|
80 |
+
self.model_ema.restore(self.parameters())
|
81 |
+
if context is not None:
|
82 |
+
print(f"{context}: Restored training weights")
|
83 |
+
|
84 |
+
def init_from_ckpt(self, path, ignore_keys=None):
|
85 |
+
sd = torch.load(path, map_location="cpu")["state_dict"]
|
86 |
+
keys = list(sd.keys())
|
87 |
+
for k in keys:
|
88 |
+
for ik in ignore_keys or []:
|
89 |
+
if k.startswith(ik):
|
90 |
+
print("Deleting key {} from state_dict.".format(k))
|
91 |
+
del sd[k]
|
92 |
+
missing, unexpected = self.load_state_dict(sd, strict=False)
|
93 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
94 |
+
if missing:
|
95 |
+
print(f"Missing Keys: {missing}")
|
96 |
+
if unexpected:
|
97 |
+
print(f"Unexpected Keys: {unexpected}")
|
98 |
+
|
99 |
+
def on_train_batch_end(self, *args, **kwargs):
|
100 |
+
if self.use_ema:
|
101 |
+
self.model_ema(self)
|
102 |
+
|
103 |
+
def encode(self, x):
|
104 |
+
h = self.encoder(x)
|
105 |
+
h = self.quant_conv(h)
|
106 |
+
quant, emb_loss, info = self.quantize(h)
|
107 |
+
return quant, emb_loss, info
|
108 |
+
|
109 |
+
def encode_to_prequant(self, x):
|
110 |
+
h = self.encoder(x)
|
111 |
+
h = self.quant_conv(h)
|
112 |
+
return h
|
113 |
+
|
114 |
+
def decode(self, quant):
|
115 |
+
quant = self.post_quant_conv(quant)
|
116 |
+
dec = self.decoder(quant)
|
117 |
+
return dec
|
118 |
+
|
119 |
+
def decode_code(self, code_b):
|
120 |
+
quant_b = self.quantize.embed_code(code_b)
|
121 |
+
dec = self.decode(quant_b)
|
122 |
+
return dec
|
123 |
+
|
124 |
+
def forward(self, input, return_pred_indices=False):
|
125 |
+
quant, diff, (_,_,ind) = self.encode(input)
|
126 |
+
dec = self.decode(quant)
|
127 |
+
if return_pred_indices:
|
128 |
+
return dec, diff, ind
|
129 |
+
return dec, diff
|
130 |
+
|
131 |
+
def get_input(self, batch, k):
|
132 |
+
x = batch[k]
|
133 |
+
if len(x.shape) == 3:
|
134 |
+
x = x[..., None]
|
135 |
+
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
136 |
+
if self.batch_resize_range is not None:
|
137 |
+
lower_size = self.batch_resize_range[0]
|
138 |
+
upper_size = self.batch_resize_range[1]
|
139 |
+
if self.global_step <= 4:
|
140 |
+
# do the first few batches with max size to avoid later oom
|
141 |
+
new_resize = upper_size
|
142 |
+
else:
|
143 |
+
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
144 |
+
if new_resize != x.shape[2]:
|
145 |
+
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
146 |
+
x = x.detach()
|
147 |
+
return x
|
148 |
+
|
149 |
+
def training_step(self, batch, batch_idx, optimizer_idx):
|
150 |
+
# https://github.com/pytorch/pytorch/issues/37142
|
151 |
+
# try not to fool the heuristics
|
152 |
+
x = self.get_input(batch, self.image_key)
|
153 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
154 |
+
|
155 |
+
if optimizer_idx == 0:
|
156 |
+
# autoencode
|
157 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
158 |
+
last_layer=self.get_last_layer(), split="train",
|
159 |
+
predicted_indices=ind)
|
160 |
+
|
161 |
+
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
+
return aeloss
|
163 |
+
|
164 |
+
if optimizer_idx == 1:
|
165 |
+
# discriminator
|
166 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
167 |
+
last_layer=self.get_last_layer(), split="train")
|
168 |
+
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
169 |
+
return discloss
|
170 |
+
|
171 |
+
def validation_step(self, batch, batch_idx):
|
172 |
+
log_dict = self._validation_step(batch, batch_idx)
|
173 |
+
with self.ema_scope():
|
174 |
+
self._validation_step(batch, batch_idx, suffix="_ema")
|
175 |
+
return log_dict
|
176 |
+
|
177 |
+
def _validation_step(self, batch, batch_idx, suffix=""):
|
178 |
+
x = self.get_input(batch, self.image_key)
|
179 |
+
xrec, qloss, ind = self(x, return_pred_indices=True)
|
180 |
+
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
181 |
+
self.global_step,
|
182 |
+
last_layer=self.get_last_layer(),
|
183 |
+
split="val"+suffix,
|
184 |
+
predicted_indices=ind
|
185 |
+
)
|
186 |
+
|
187 |
+
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
188 |
+
self.global_step,
|
189 |
+
last_layer=self.get_last_layer(),
|
190 |
+
split="val"+suffix,
|
191 |
+
predicted_indices=ind
|
192 |
+
)
|
193 |
+
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
194 |
+
self.log(f"val{suffix}/rec_loss", rec_loss,
|
195 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
196 |
+
self.log(f"val{suffix}/aeloss", aeloss,
|
197 |
+
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
198 |
+
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
199 |
+
del log_dict_ae[f"val{suffix}/rec_loss"]
|
200 |
+
self.log_dict(log_dict_ae)
|
201 |
+
self.log_dict(log_dict_disc)
|
202 |
+
return self.log_dict
|
203 |
+
|
204 |
+
def configure_optimizers(self):
|
205 |
+
lr_d = self.learning_rate
|
206 |
+
lr_g = self.lr_g_factor*self.learning_rate
|
207 |
+
print("lr_d", lr_d)
|
208 |
+
print("lr_g", lr_g)
|
209 |
+
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
210 |
+
list(self.decoder.parameters())+
|
211 |
+
list(self.quantize.parameters())+
|
212 |
+
list(self.quant_conv.parameters())+
|
213 |
+
list(self.post_quant_conv.parameters()),
|
214 |
+
lr=lr_g, betas=(0.5, 0.9))
|
215 |
+
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
216 |
+
lr=lr_d, betas=(0.5, 0.9))
|
217 |
+
|
218 |
+
if self.scheduler_config is not None:
|
219 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
220 |
+
|
221 |
+
print("Setting up LambdaLR scheduler...")
|
222 |
+
scheduler = [
|
223 |
+
{
|
224 |
+
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
225 |
+
'interval': 'step',
|
226 |
+
'frequency': 1
|
227 |
+
},
|
228 |
+
{
|
229 |
+
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
230 |
+
'interval': 'step',
|
231 |
+
'frequency': 1
|
232 |
+
},
|
233 |
+
]
|
234 |
+
return [opt_ae, opt_disc], scheduler
|
235 |
+
return [opt_ae, opt_disc], []
|
236 |
+
|
237 |
+
def get_last_layer(self):
|
238 |
+
return self.decoder.conv_out.weight
|
239 |
+
|
240 |
+
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
241 |
+
log = {}
|
242 |
+
x = self.get_input(batch, self.image_key)
|
243 |
+
x = x.to(self.device)
|
244 |
+
if only_inputs:
|
245 |
+
log["inputs"] = x
|
246 |
+
return log
|
247 |
+
xrec, _ = self(x)
|
248 |
+
if x.shape[1] > 3:
|
249 |
+
# colorize with random projection
|
250 |
+
assert xrec.shape[1] > 3
|
251 |
+
x = self.to_rgb(x)
|
252 |
+
xrec = self.to_rgb(xrec)
|
253 |
+
log["inputs"] = x
|
254 |
+
log["reconstructions"] = xrec
|
255 |
+
if plot_ema:
|
256 |
+
with self.ema_scope():
|
257 |
+
xrec_ema, _ = self(x)
|
258 |
+
if x.shape[1] > 3:
|
259 |
+
xrec_ema = self.to_rgb(xrec_ema)
|
260 |
+
log["reconstructions_ema"] = xrec_ema
|
261 |
+
return log
|
262 |
+
|
263 |
+
def to_rgb(self, x):
|
264 |
+
assert self.image_key == "segmentation"
|
265 |
+
if not hasattr(self, "colorize"):
|
266 |
+
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
267 |
+
x = F.conv2d(x, weight=self.colorize)
|
268 |
+
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
269 |
+
return x
|
270 |
+
|
271 |
+
|
272 |
+
class VQModelInterface(VQModel):
|
273 |
+
def __init__(self, embed_dim, *args, **kwargs):
|
274 |
+
super().__init__(*args, embed_dim=embed_dim, **kwargs)
|
275 |
+
self.embed_dim = embed_dim
|
276 |
+
|
277 |
+
def encode(self, x):
|
278 |
+
h = self.encoder(x)
|
279 |
+
h = self.quant_conv(h)
|
280 |
+
return h
|
281 |
+
|
282 |
+
def decode(self, h, force_not_quantize=False):
|
283 |
+
# also go through quantization layer
|
284 |
+
if not force_not_quantize:
|
285 |
+
quant, emb_loss, info = self.quantize(h)
|
286 |
+
else:
|
287 |
+
quant = h
|
288 |
+
quant = self.post_quant_conv(quant)
|
289 |
+
dec = self.decoder(quant)
|
290 |
+
return dec
|
291 |
+
|
292 |
+
ldm.models.autoencoder.VQModel = VQModel
|
293 |
+
ldm.models.autoencoder.VQModelInterface = VQModelInterface
|
extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
ADDED
@@ -0,0 +1,1443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This script is copied from the compvis/stable-diffusion repo (aka the SD V1 repo)
|
2 |
+
# Original filename: ldm/models/diffusion/ddpm.py
|
3 |
+
# The purpose to reinstate the old DDPM logic which works with VQ, whereas the V2 one doesn't
|
4 |
+
# Some models such as LDSR require VQ to work correctly
|
5 |
+
# The classes are suffixed with "V1" and added back to the "ldm.models.diffusion.ddpm" module
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import numpy as np
|
10 |
+
import pytorch_lightning as pl
|
11 |
+
from torch.optim.lr_scheduler import LambdaLR
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
from contextlib import contextmanager
|
14 |
+
from functools import partial
|
15 |
+
from tqdm import tqdm
|
16 |
+
from torchvision.utils import make_grid
|
17 |
+
from pytorch_lightning.utilities.distributed import rank_zero_only
|
18 |
+
|
19 |
+
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
20 |
+
from ldm.modules.ema import LitEma
|
21 |
+
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
22 |
+
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
23 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
24 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
25 |
+
|
26 |
+
import ldm.models.diffusion.ddpm
|
27 |
+
|
28 |
+
__conditioning_keys__ = {'concat': 'c_concat',
|
29 |
+
'crossattn': 'c_crossattn',
|
30 |
+
'adm': 'y'}
|
31 |
+
|
32 |
+
|
33 |
+
def disabled_train(self, mode=True):
|
34 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
35 |
+
does not change anymore."""
|
36 |
+
return self
|
37 |
+
|
38 |
+
|
39 |
+
def uniform_on_device(r1, r2, shape, device):
|
40 |
+
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
41 |
+
|
42 |
+
|
43 |
+
class DDPMV1(pl.LightningModule):
|
44 |
+
# classic DDPM with Gaussian diffusion, in image space
|
45 |
+
def __init__(self,
|
46 |
+
unet_config,
|
47 |
+
timesteps=1000,
|
48 |
+
beta_schedule="linear",
|
49 |
+
loss_type="l2",
|
50 |
+
ckpt_path=None,
|
51 |
+
ignore_keys=None,
|
52 |
+
load_only_unet=False,
|
53 |
+
monitor="val/loss",
|
54 |
+
use_ema=True,
|
55 |
+
first_stage_key="image",
|
56 |
+
image_size=256,
|
57 |
+
channels=3,
|
58 |
+
log_every_t=100,
|
59 |
+
clip_denoised=True,
|
60 |
+
linear_start=1e-4,
|
61 |
+
linear_end=2e-2,
|
62 |
+
cosine_s=8e-3,
|
63 |
+
given_betas=None,
|
64 |
+
original_elbo_weight=0.,
|
65 |
+
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
66 |
+
l_simple_weight=1.,
|
67 |
+
conditioning_key=None,
|
68 |
+
parameterization="eps", # all assuming fixed variance schedules
|
69 |
+
scheduler_config=None,
|
70 |
+
use_positional_encodings=False,
|
71 |
+
learn_logvar=False,
|
72 |
+
logvar_init=0.,
|
73 |
+
):
|
74 |
+
super().__init__()
|
75 |
+
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
76 |
+
self.parameterization = parameterization
|
77 |
+
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
78 |
+
self.cond_stage_model = None
|
79 |
+
self.clip_denoised = clip_denoised
|
80 |
+
self.log_every_t = log_every_t
|
81 |
+
self.first_stage_key = first_stage_key
|
82 |
+
self.image_size = image_size # try conv?
|
83 |
+
self.channels = channels
|
84 |
+
self.use_positional_encodings = use_positional_encodings
|
85 |
+
self.model = DiffusionWrapperV1(unet_config, conditioning_key)
|
86 |
+
count_params(self.model, verbose=True)
|
87 |
+
self.use_ema = use_ema
|
88 |
+
if self.use_ema:
|
89 |
+
self.model_ema = LitEma(self.model)
|
90 |
+
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
91 |
+
|
92 |
+
self.use_scheduler = scheduler_config is not None
|
93 |
+
if self.use_scheduler:
|
94 |
+
self.scheduler_config = scheduler_config
|
95 |
+
|
96 |
+
self.v_posterior = v_posterior
|
97 |
+
self.original_elbo_weight = original_elbo_weight
|
98 |
+
self.l_simple_weight = l_simple_weight
|
99 |
+
|
100 |
+
if monitor is not None:
|
101 |
+
self.monitor = monitor
|
102 |
+
if ckpt_path is not None:
|
103 |
+
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)
|
104 |
+
|
105 |
+
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
106 |
+
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
107 |
+
|
108 |
+
self.loss_type = loss_type
|
109 |
+
|
110 |
+
self.learn_logvar = learn_logvar
|
111 |
+
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
112 |
+
if self.learn_logvar:
|
113 |
+
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
114 |
+
|
115 |
+
|
116 |
+
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
117 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
118 |
+
if exists(given_betas):
|
119 |
+
betas = given_betas
|
120 |
+
else:
|
121 |
+
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
122 |
+
cosine_s=cosine_s)
|
123 |
+
alphas = 1. - betas
|
124 |
+
alphas_cumprod = np.cumprod(alphas, axis=0)
|
125 |
+
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
126 |
+
|
127 |
+
timesteps, = betas.shape
|
128 |
+
self.num_timesteps = int(timesteps)
|
129 |
+
self.linear_start = linear_start
|
130 |
+
self.linear_end = linear_end
|
131 |
+
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
132 |
+
|
133 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
134 |
+
|
135 |
+
self.register_buffer('betas', to_torch(betas))
|
136 |
+
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
137 |
+
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
138 |
+
|
139 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
140 |
+
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
141 |
+
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
142 |
+
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
143 |
+
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
144 |
+
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
145 |
+
|
146 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
147 |
+
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
148 |
+
1. - alphas_cumprod) + self.v_posterior * betas
|
149 |
+
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
150 |
+
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
151 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
152 |
+
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
153 |
+
self.register_buffer('posterior_mean_coef1', to_torch(
|
154 |
+
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
155 |
+
self.register_buffer('posterior_mean_coef2', to_torch(
|
156 |
+
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
157 |
+
|
158 |
+
if self.parameterization == "eps":
|
159 |
+
lvlb_weights = self.betas ** 2 / (
|
160 |
+
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
161 |
+
elif self.parameterization == "x0":
|
162 |
+
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
163 |
+
else:
|
164 |
+
raise NotImplementedError("mu not supported")
|
165 |
+
# TODO how to choose this term
|
166 |
+
lvlb_weights[0] = lvlb_weights[1]
|
167 |
+
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
168 |
+
assert not torch.isnan(self.lvlb_weights).all()
|
169 |
+
|
170 |
+
@contextmanager
|
171 |
+
def ema_scope(self, context=None):
|
172 |
+
if self.use_ema:
|
173 |
+
self.model_ema.store(self.model.parameters())
|
174 |
+
self.model_ema.copy_to(self.model)
|
175 |
+
if context is not None:
|
176 |
+
print(f"{context}: Switched to EMA weights")
|
177 |
+
try:
|
178 |
+
yield None
|
179 |
+
finally:
|
180 |
+
if self.use_ema:
|
181 |
+
self.model_ema.restore(self.model.parameters())
|
182 |
+
if context is not None:
|
183 |
+
print(f"{context}: Restored training weights")
|
184 |
+
|
185 |
+
def init_from_ckpt(self, path, ignore_keys=None, only_model=False):
|
186 |
+
sd = torch.load(path, map_location="cpu")
|
187 |
+
if "state_dict" in list(sd.keys()):
|
188 |
+
sd = sd["state_dict"]
|
189 |
+
keys = list(sd.keys())
|
190 |
+
for k in keys:
|
191 |
+
for ik in ignore_keys or []:
|
192 |
+
if k.startswith(ik):
|
193 |
+
print("Deleting key {} from state_dict.".format(k))
|
194 |
+
del sd[k]
|
195 |
+
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
196 |
+
sd, strict=False)
|
197 |
+
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
198 |
+
if missing:
|
199 |
+
print(f"Missing Keys: {missing}")
|
200 |
+
if unexpected:
|
201 |
+
print(f"Unexpected Keys: {unexpected}")
|
202 |
+
|
203 |
+
def q_mean_variance(self, x_start, t):
|
204 |
+
"""
|
205 |
+
Get the distribution q(x_t | x_0).
|
206 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
207 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
208 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
209 |
+
"""
|
210 |
+
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
211 |
+
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
212 |
+
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
213 |
+
return mean, variance, log_variance
|
214 |
+
|
215 |
+
def predict_start_from_noise(self, x_t, t, noise):
|
216 |
+
return (
|
217 |
+
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
218 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
219 |
+
)
|
220 |
+
|
221 |
+
def q_posterior(self, x_start, x_t, t):
|
222 |
+
posterior_mean = (
|
223 |
+
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
224 |
+
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
225 |
+
)
|
226 |
+
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
227 |
+
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
228 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
229 |
+
|
230 |
+
def p_mean_variance(self, x, t, clip_denoised: bool):
|
231 |
+
model_out = self.model(x, t)
|
232 |
+
if self.parameterization == "eps":
|
233 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
234 |
+
elif self.parameterization == "x0":
|
235 |
+
x_recon = model_out
|
236 |
+
if clip_denoised:
|
237 |
+
x_recon.clamp_(-1., 1.)
|
238 |
+
|
239 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
240 |
+
return model_mean, posterior_variance, posterior_log_variance
|
241 |
+
|
242 |
+
@torch.no_grad()
|
243 |
+
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
244 |
+
b, *_, device = *x.shape, x.device
|
245 |
+
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
246 |
+
noise = noise_like(x.shape, device, repeat_noise)
|
247 |
+
# no noise when t == 0
|
248 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
249 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
250 |
+
|
251 |
+
@torch.no_grad()
|
252 |
+
def p_sample_loop(self, shape, return_intermediates=False):
|
253 |
+
device = self.betas.device
|
254 |
+
b = shape[0]
|
255 |
+
img = torch.randn(shape, device=device)
|
256 |
+
intermediates = [img]
|
257 |
+
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
258 |
+
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
259 |
+
clip_denoised=self.clip_denoised)
|
260 |
+
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
261 |
+
intermediates.append(img)
|
262 |
+
if return_intermediates:
|
263 |
+
return img, intermediates
|
264 |
+
return img
|
265 |
+
|
266 |
+
@torch.no_grad()
|
267 |
+
def sample(self, batch_size=16, return_intermediates=False):
|
268 |
+
image_size = self.image_size
|
269 |
+
channels = self.channels
|
270 |
+
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
271 |
+
return_intermediates=return_intermediates)
|
272 |
+
|
273 |
+
def q_sample(self, x_start, t, noise=None):
|
274 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
275 |
+
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
276 |
+
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
277 |
+
|
278 |
+
def get_loss(self, pred, target, mean=True):
|
279 |
+
if self.loss_type == 'l1':
|
280 |
+
loss = (target - pred).abs()
|
281 |
+
if mean:
|
282 |
+
loss = loss.mean()
|
283 |
+
elif self.loss_type == 'l2':
|
284 |
+
if mean:
|
285 |
+
loss = torch.nn.functional.mse_loss(target, pred)
|
286 |
+
else:
|
287 |
+
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
288 |
+
else:
|
289 |
+
raise NotImplementedError("unknown loss type '{loss_type}'")
|
290 |
+
|
291 |
+
return loss
|
292 |
+
|
293 |
+
def p_losses(self, x_start, t, noise=None):
|
294 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
295 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
296 |
+
model_out = self.model(x_noisy, t)
|
297 |
+
|
298 |
+
loss_dict = {}
|
299 |
+
if self.parameterization == "eps":
|
300 |
+
target = noise
|
301 |
+
elif self.parameterization == "x0":
|
302 |
+
target = x_start
|
303 |
+
else:
|
304 |
+
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
305 |
+
|
306 |
+
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
307 |
+
|
308 |
+
log_prefix = 'train' if self.training else 'val'
|
309 |
+
|
310 |
+
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
311 |
+
loss_simple = loss.mean() * self.l_simple_weight
|
312 |
+
|
313 |
+
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
314 |
+
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
315 |
+
|
316 |
+
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
317 |
+
|
318 |
+
loss_dict.update({f'{log_prefix}/loss': loss})
|
319 |
+
|
320 |
+
return loss, loss_dict
|
321 |
+
|
322 |
+
def forward(self, x, *args, **kwargs):
|
323 |
+
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
324 |
+
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
325 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
326 |
+
return self.p_losses(x, t, *args, **kwargs)
|
327 |
+
|
328 |
+
def get_input(self, batch, k):
|
329 |
+
x = batch[k]
|
330 |
+
if len(x.shape) == 3:
|
331 |
+
x = x[..., None]
|
332 |
+
x = rearrange(x, 'b h w c -> b c h w')
|
333 |
+
x = x.to(memory_format=torch.contiguous_format).float()
|
334 |
+
return x
|
335 |
+
|
336 |
+
def shared_step(self, batch):
|
337 |
+
x = self.get_input(batch, self.first_stage_key)
|
338 |
+
loss, loss_dict = self(x)
|
339 |
+
return loss, loss_dict
|
340 |
+
|
341 |
+
def training_step(self, batch, batch_idx):
|
342 |
+
loss, loss_dict = self.shared_step(batch)
|
343 |
+
|
344 |
+
self.log_dict(loss_dict, prog_bar=True,
|
345 |
+
logger=True, on_step=True, on_epoch=True)
|
346 |
+
|
347 |
+
self.log("global_step", self.global_step,
|
348 |
+
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
349 |
+
|
350 |
+
if self.use_scheduler:
|
351 |
+
lr = self.optimizers().param_groups[0]['lr']
|
352 |
+
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
353 |
+
|
354 |
+
return loss
|
355 |
+
|
356 |
+
@torch.no_grad()
|
357 |
+
def validation_step(self, batch, batch_idx):
|
358 |
+
_, loss_dict_no_ema = self.shared_step(batch)
|
359 |
+
with self.ema_scope():
|
360 |
+
_, loss_dict_ema = self.shared_step(batch)
|
361 |
+
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
362 |
+
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
363 |
+
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
364 |
+
|
365 |
+
def on_train_batch_end(self, *args, **kwargs):
|
366 |
+
if self.use_ema:
|
367 |
+
self.model_ema(self.model)
|
368 |
+
|
369 |
+
def _get_rows_from_list(self, samples):
|
370 |
+
n_imgs_per_row = len(samples)
|
371 |
+
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
372 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
373 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
374 |
+
return denoise_grid
|
375 |
+
|
376 |
+
@torch.no_grad()
|
377 |
+
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
378 |
+
log = {}
|
379 |
+
x = self.get_input(batch, self.first_stage_key)
|
380 |
+
N = min(x.shape[0], N)
|
381 |
+
n_row = min(x.shape[0], n_row)
|
382 |
+
x = x.to(self.device)[:N]
|
383 |
+
log["inputs"] = x
|
384 |
+
|
385 |
+
# get diffusion row
|
386 |
+
diffusion_row = []
|
387 |
+
x_start = x[:n_row]
|
388 |
+
|
389 |
+
for t in range(self.num_timesteps):
|
390 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
391 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
392 |
+
t = t.to(self.device).long()
|
393 |
+
noise = torch.randn_like(x_start)
|
394 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
395 |
+
diffusion_row.append(x_noisy)
|
396 |
+
|
397 |
+
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
398 |
+
|
399 |
+
if sample:
|
400 |
+
# get denoise row
|
401 |
+
with self.ema_scope("Plotting"):
|
402 |
+
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
403 |
+
|
404 |
+
log["samples"] = samples
|
405 |
+
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
406 |
+
|
407 |
+
if return_keys:
|
408 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
409 |
+
return log
|
410 |
+
else:
|
411 |
+
return {key: log[key] for key in return_keys}
|
412 |
+
return log
|
413 |
+
|
414 |
+
def configure_optimizers(self):
|
415 |
+
lr = self.learning_rate
|
416 |
+
params = list(self.model.parameters())
|
417 |
+
if self.learn_logvar:
|
418 |
+
params = params + [self.logvar]
|
419 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
420 |
+
return opt
|
421 |
+
|
422 |
+
|
423 |
+
class LatentDiffusionV1(DDPMV1):
|
424 |
+
"""main class"""
|
425 |
+
def __init__(self,
|
426 |
+
first_stage_config,
|
427 |
+
cond_stage_config,
|
428 |
+
num_timesteps_cond=None,
|
429 |
+
cond_stage_key="image",
|
430 |
+
cond_stage_trainable=False,
|
431 |
+
concat_mode=True,
|
432 |
+
cond_stage_forward=None,
|
433 |
+
conditioning_key=None,
|
434 |
+
scale_factor=1.0,
|
435 |
+
scale_by_std=False,
|
436 |
+
*args, **kwargs):
|
437 |
+
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
438 |
+
self.scale_by_std = scale_by_std
|
439 |
+
assert self.num_timesteps_cond <= kwargs['timesteps']
|
440 |
+
# for backwards compatibility after implementation of DiffusionWrapper
|
441 |
+
if conditioning_key is None:
|
442 |
+
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
443 |
+
if cond_stage_config == '__is_unconditional__':
|
444 |
+
conditioning_key = None
|
445 |
+
ckpt_path = kwargs.pop("ckpt_path", None)
|
446 |
+
ignore_keys = kwargs.pop("ignore_keys", [])
|
447 |
+
super().__init__(*args, conditioning_key=conditioning_key, **kwargs)
|
448 |
+
self.concat_mode = concat_mode
|
449 |
+
self.cond_stage_trainable = cond_stage_trainable
|
450 |
+
self.cond_stage_key = cond_stage_key
|
451 |
+
try:
|
452 |
+
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
453 |
+
except Exception:
|
454 |
+
self.num_downs = 0
|
455 |
+
if not scale_by_std:
|
456 |
+
self.scale_factor = scale_factor
|
457 |
+
else:
|
458 |
+
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
459 |
+
self.instantiate_first_stage(first_stage_config)
|
460 |
+
self.instantiate_cond_stage(cond_stage_config)
|
461 |
+
self.cond_stage_forward = cond_stage_forward
|
462 |
+
self.clip_denoised = False
|
463 |
+
self.bbox_tokenizer = None
|
464 |
+
|
465 |
+
self.restarted_from_ckpt = False
|
466 |
+
if ckpt_path is not None:
|
467 |
+
self.init_from_ckpt(ckpt_path, ignore_keys)
|
468 |
+
self.restarted_from_ckpt = True
|
469 |
+
|
470 |
+
def make_cond_schedule(self, ):
|
471 |
+
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
472 |
+
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
473 |
+
self.cond_ids[:self.num_timesteps_cond] = ids
|
474 |
+
|
475 |
+
@rank_zero_only
|
476 |
+
@torch.no_grad()
|
477 |
+
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
478 |
+
# only for very first batch
|
479 |
+
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
480 |
+
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
481 |
+
# set rescale weight to 1./std of encodings
|
482 |
+
print("### USING STD-RESCALING ###")
|
483 |
+
x = super().get_input(batch, self.first_stage_key)
|
484 |
+
x = x.to(self.device)
|
485 |
+
encoder_posterior = self.encode_first_stage(x)
|
486 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
487 |
+
del self.scale_factor
|
488 |
+
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
489 |
+
print(f"setting self.scale_factor to {self.scale_factor}")
|
490 |
+
print("### USING STD-RESCALING ###")
|
491 |
+
|
492 |
+
def register_schedule(self,
|
493 |
+
given_betas=None, beta_schedule="linear", timesteps=1000,
|
494 |
+
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
495 |
+
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
496 |
+
|
497 |
+
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
498 |
+
if self.shorten_cond_schedule:
|
499 |
+
self.make_cond_schedule()
|
500 |
+
|
501 |
+
def instantiate_first_stage(self, config):
|
502 |
+
model = instantiate_from_config(config)
|
503 |
+
self.first_stage_model = model.eval()
|
504 |
+
self.first_stage_model.train = disabled_train
|
505 |
+
for param in self.first_stage_model.parameters():
|
506 |
+
param.requires_grad = False
|
507 |
+
|
508 |
+
def instantiate_cond_stage(self, config):
|
509 |
+
if not self.cond_stage_trainable:
|
510 |
+
if config == "__is_first_stage__":
|
511 |
+
print("Using first stage also as cond stage.")
|
512 |
+
self.cond_stage_model = self.first_stage_model
|
513 |
+
elif config == "__is_unconditional__":
|
514 |
+
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
515 |
+
self.cond_stage_model = None
|
516 |
+
# self.be_unconditional = True
|
517 |
+
else:
|
518 |
+
model = instantiate_from_config(config)
|
519 |
+
self.cond_stage_model = model.eval()
|
520 |
+
self.cond_stage_model.train = disabled_train
|
521 |
+
for param in self.cond_stage_model.parameters():
|
522 |
+
param.requires_grad = False
|
523 |
+
else:
|
524 |
+
assert config != '__is_first_stage__'
|
525 |
+
assert config != '__is_unconditional__'
|
526 |
+
model = instantiate_from_config(config)
|
527 |
+
self.cond_stage_model = model
|
528 |
+
|
529 |
+
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
530 |
+
denoise_row = []
|
531 |
+
for zd in tqdm(samples, desc=desc):
|
532 |
+
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
533 |
+
force_not_quantize=force_no_decoder_quantization))
|
534 |
+
n_imgs_per_row = len(denoise_row)
|
535 |
+
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
536 |
+
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
537 |
+
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
538 |
+
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
539 |
+
return denoise_grid
|
540 |
+
|
541 |
+
def get_first_stage_encoding(self, encoder_posterior):
|
542 |
+
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
543 |
+
z = encoder_posterior.sample()
|
544 |
+
elif isinstance(encoder_posterior, torch.Tensor):
|
545 |
+
z = encoder_posterior
|
546 |
+
else:
|
547 |
+
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
548 |
+
return self.scale_factor * z
|
549 |
+
|
550 |
+
def get_learned_conditioning(self, c):
|
551 |
+
if self.cond_stage_forward is None:
|
552 |
+
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
553 |
+
c = self.cond_stage_model.encode(c)
|
554 |
+
if isinstance(c, DiagonalGaussianDistribution):
|
555 |
+
c = c.mode()
|
556 |
+
else:
|
557 |
+
c = self.cond_stage_model(c)
|
558 |
+
else:
|
559 |
+
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
560 |
+
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
561 |
+
return c
|
562 |
+
|
563 |
+
def meshgrid(self, h, w):
|
564 |
+
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
565 |
+
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
566 |
+
|
567 |
+
arr = torch.cat([y, x], dim=-1)
|
568 |
+
return arr
|
569 |
+
|
570 |
+
def delta_border(self, h, w):
|
571 |
+
"""
|
572 |
+
:param h: height
|
573 |
+
:param w: width
|
574 |
+
:return: normalized distance to image border,
|
575 |
+
wtith min distance = 0 at border and max dist = 0.5 at image center
|
576 |
+
"""
|
577 |
+
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
578 |
+
arr = self.meshgrid(h, w) / lower_right_corner
|
579 |
+
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
580 |
+
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
581 |
+
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
582 |
+
return edge_dist
|
583 |
+
|
584 |
+
def get_weighting(self, h, w, Ly, Lx, device):
|
585 |
+
weighting = self.delta_border(h, w)
|
586 |
+
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
587 |
+
self.split_input_params["clip_max_weight"], )
|
588 |
+
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
589 |
+
|
590 |
+
if self.split_input_params["tie_braker"]:
|
591 |
+
L_weighting = self.delta_border(Ly, Lx)
|
592 |
+
L_weighting = torch.clip(L_weighting,
|
593 |
+
self.split_input_params["clip_min_tie_weight"],
|
594 |
+
self.split_input_params["clip_max_tie_weight"])
|
595 |
+
|
596 |
+
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
597 |
+
weighting = weighting * L_weighting
|
598 |
+
return weighting
|
599 |
+
|
600 |
+
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
601 |
+
"""
|
602 |
+
:param x: img of size (bs, c, h, w)
|
603 |
+
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
604 |
+
"""
|
605 |
+
bs, nc, h, w = x.shape
|
606 |
+
|
607 |
+
# number of crops in image
|
608 |
+
Ly = (h - kernel_size[0]) // stride[0] + 1
|
609 |
+
Lx = (w - kernel_size[1]) // stride[1] + 1
|
610 |
+
|
611 |
+
if uf == 1 and df == 1:
|
612 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
613 |
+
unfold = torch.nn.Unfold(**fold_params)
|
614 |
+
|
615 |
+
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
616 |
+
|
617 |
+
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
618 |
+
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
619 |
+
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
620 |
+
|
621 |
+
elif uf > 1 and df == 1:
|
622 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
623 |
+
unfold = torch.nn.Unfold(**fold_params)
|
624 |
+
|
625 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
626 |
+
dilation=1, padding=0,
|
627 |
+
stride=(stride[0] * uf, stride[1] * uf))
|
628 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
629 |
+
|
630 |
+
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
631 |
+
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
632 |
+
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
633 |
+
|
634 |
+
elif df > 1 and uf == 1:
|
635 |
+
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
636 |
+
unfold = torch.nn.Unfold(**fold_params)
|
637 |
+
|
638 |
+
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
639 |
+
dilation=1, padding=0,
|
640 |
+
stride=(stride[0] // df, stride[1] // df))
|
641 |
+
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
642 |
+
|
643 |
+
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
644 |
+
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
645 |
+
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
646 |
+
|
647 |
+
else:
|
648 |
+
raise NotImplementedError
|
649 |
+
|
650 |
+
return fold, unfold, normalization, weighting
|
651 |
+
|
652 |
+
@torch.no_grad()
|
653 |
+
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
654 |
+
cond_key=None, return_original_cond=False, bs=None):
|
655 |
+
x = super().get_input(batch, k)
|
656 |
+
if bs is not None:
|
657 |
+
x = x[:bs]
|
658 |
+
x = x.to(self.device)
|
659 |
+
encoder_posterior = self.encode_first_stage(x)
|
660 |
+
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
661 |
+
|
662 |
+
if self.model.conditioning_key is not None:
|
663 |
+
if cond_key is None:
|
664 |
+
cond_key = self.cond_stage_key
|
665 |
+
if cond_key != self.first_stage_key:
|
666 |
+
if cond_key in ['caption', 'coordinates_bbox']:
|
667 |
+
xc = batch[cond_key]
|
668 |
+
elif cond_key == 'class_label':
|
669 |
+
xc = batch
|
670 |
+
else:
|
671 |
+
xc = super().get_input(batch, cond_key).to(self.device)
|
672 |
+
else:
|
673 |
+
xc = x
|
674 |
+
if not self.cond_stage_trainable or force_c_encode:
|
675 |
+
if isinstance(xc, dict) or isinstance(xc, list):
|
676 |
+
# import pudb; pudb.set_trace()
|
677 |
+
c = self.get_learned_conditioning(xc)
|
678 |
+
else:
|
679 |
+
c = self.get_learned_conditioning(xc.to(self.device))
|
680 |
+
else:
|
681 |
+
c = xc
|
682 |
+
if bs is not None:
|
683 |
+
c = c[:bs]
|
684 |
+
|
685 |
+
if self.use_positional_encodings:
|
686 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
687 |
+
ckey = __conditioning_keys__[self.model.conditioning_key]
|
688 |
+
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
689 |
+
|
690 |
+
else:
|
691 |
+
c = None
|
692 |
+
xc = None
|
693 |
+
if self.use_positional_encodings:
|
694 |
+
pos_x, pos_y = self.compute_latent_shifts(batch)
|
695 |
+
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
696 |
+
out = [z, c]
|
697 |
+
if return_first_stage_outputs:
|
698 |
+
xrec = self.decode_first_stage(z)
|
699 |
+
out.extend([x, xrec])
|
700 |
+
if return_original_cond:
|
701 |
+
out.append(xc)
|
702 |
+
return out
|
703 |
+
|
704 |
+
@torch.no_grad()
|
705 |
+
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
706 |
+
if predict_cids:
|
707 |
+
if z.dim() == 4:
|
708 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
709 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
710 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
711 |
+
|
712 |
+
z = 1. / self.scale_factor * z
|
713 |
+
|
714 |
+
if hasattr(self, "split_input_params"):
|
715 |
+
if self.split_input_params["patch_distributed_vq"]:
|
716 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
717 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
718 |
+
uf = self.split_input_params["vqf"]
|
719 |
+
bs, nc, h, w = z.shape
|
720 |
+
if ks[0] > h or ks[1] > w:
|
721 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
722 |
+
print("reducing Kernel")
|
723 |
+
|
724 |
+
if stride[0] > h or stride[1] > w:
|
725 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
726 |
+
print("reducing stride")
|
727 |
+
|
728 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
729 |
+
|
730 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
731 |
+
# 1. Reshape to img shape
|
732 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
733 |
+
|
734 |
+
# 2. apply model loop over last dim
|
735 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
736 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
737 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
738 |
+
for i in range(z.shape[-1])]
|
739 |
+
else:
|
740 |
+
|
741 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
742 |
+
for i in range(z.shape[-1])]
|
743 |
+
|
744 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
745 |
+
o = o * weighting
|
746 |
+
# Reverse 1. reshape to img shape
|
747 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
748 |
+
# stitch crops together
|
749 |
+
decoded = fold(o)
|
750 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
751 |
+
return decoded
|
752 |
+
else:
|
753 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
754 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
755 |
+
else:
|
756 |
+
return self.first_stage_model.decode(z)
|
757 |
+
|
758 |
+
else:
|
759 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
760 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
761 |
+
else:
|
762 |
+
return self.first_stage_model.decode(z)
|
763 |
+
|
764 |
+
# same as above but without decorator
|
765 |
+
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
766 |
+
if predict_cids:
|
767 |
+
if z.dim() == 4:
|
768 |
+
z = torch.argmax(z.exp(), dim=1).long()
|
769 |
+
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
770 |
+
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
771 |
+
|
772 |
+
z = 1. / self.scale_factor * z
|
773 |
+
|
774 |
+
if hasattr(self, "split_input_params"):
|
775 |
+
if self.split_input_params["patch_distributed_vq"]:
|
776 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
777 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
778 |
+
uf = self.split_input_params["vqf"]
|
779 |
+
bs, nc, h, w = z.shape
|
780 |
+
if ks[0] > h or ks[1] > w:
|
781 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
782 |
+
print("reducing Kernel")
|
783 |
+
|
784 |
+
if stride[0] > h or stride[1] > w:
|
785 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
786 |
+
print("reducing stride")
|
787 |
+
|
788 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
789 |
+
|
790 |
+
z = unfold(z) # (bn, nc * prod(**ks), L)
|
791 |
+
# 1. Reshape to img shape
|
792 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
793 |
+
|
794 |
+
# 2. apply model loop over last dim
|
795 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
796 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
797 |
+
force_not_quantize=predict_cids or force_not_quantize)
|
798 |
+
for i in range(z.shape[-1])]
|
799 |
+
else:
|
800 |
+
|
801 |
+
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
802 |
+
for i in range(z.shape[-1])]
|
803 |
+
|
804 |
+
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
805 |
+
o = o * weighting
|
806 |
+
# Reverse 1. reshape to img shape
|
807 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
808 |
+
# stitch crops together
|
809 |
+
decoded = fold(o)
|
810 |
+
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
811 |
+
return decoded
|
812 |
+
else:
|
813 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
814 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
815 |
+
else:
|
816 |
+
return self.first_stage_model.decode(z)
|
817 |
+
|
818 |
+
else:
|
819 |
+
if isinstance(self.first_stage_model, VQModelInterface):
|
820 |
+
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
821 |
+
else:
|
822 |
+
return self.first_stage_model.decode(z)
|
823 |
+
|
824 |
+
@torch.no_grad()
|
825 |
+
def encode_first_stage(self, x):
|
826 |
+
if hasattr(self, "split_input_params"):
|
827 |
+
if self.split_input_params["patch_distributed_vq"]:
|
828 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
829 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
830 |
+
df = self.split_input_params["vqf"]
|
831 |
+
self.split_input_params['original_image_size'] = x.shape[-2:]
|
832 |
+
bs, nc, h, w = x.shape
|
833 |
+
if ks[0] > h or ks[1] > w:
|
834 |
+
ks = (min(ks[0], h), min(ks[1], w))
|
835 |
+
print("reducing Kernel")
|
836 |
+
|
837 |
+
if stride[0] > h or stride[1] > w:
|
838 |
+
stride = (min(stride[0], h), min(stride[1], w))
|
839 |
+
print("reducing stride")
|
840 |
+
|
841 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
842 |
+
z = unfold(x) # (bn, nc * prod(**ks), L)
|
843 |
+
# Reshape to img shape
|
844 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
845 |
+
|
846 |
+
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
847 |
+
for i in range(z.shape[-1])]
|
848 |
+
|
849 |
+
o = torch.stack(output_list, axis=-1)
|
850 |
+
o = o * weighting
|
851 |
+
|
852 |
+
# Reverse reshape to img shape
|
853 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
854 |
+
# stitch crops together
|
855 |
+
decoded = fold(o)
|
856 |
+
decoded = decoded / normalization
|
857 |
+
return decoded
|
858 |
+
|
859 |
+
else:
|
860 |
+
return self.first_stage_model.encode(x)
|
861 |
+
else:
|
862 |
+
return self.first_stage_model.encode(x)
|
863 |
+
|
864 |
+
def shared_step(self, batch, **kwargs):
|
865 |
+
x, c = self.get_input(batch, self.first_stage_key)
|
866 |
+
loss = self(x, c)
|
867 |
+
return loss
|
868 |
+
|
869 |
+
def forward(self, x, c, *args, **kwargs):
|
870 |
+
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
871 |
+
if self.model.conditioning_key is not None:
|
872 |
+
assert c is not None
|
873 |
+
if self.cond_stage_trainable:
|
874 |
+
c = self.get_learned_conditioning(c)
|
875 |
+
if self.shorten_cond_schedule: # TODO: drop this option
|
876 |
+
tc = self.cond_ids[t].to(self.device)
|
877 |
+
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
878 |
+
return self.p_losses(x, c, t, *args, **kwargs)
|
879 |
+
|
880 |
+
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
881 |
+
|
882 |
+
if isinstance(cond, dict):
|
883 |
+
# hybrid case, cond is exptected to be a dict
|
884 |
+
pass
|
885 |
+
else:
|
886 |
+
if not isinstance(cond, list):
|
887 |
+
cond = [cond]
|
888 |
+
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
889 |
+
cond = {key: cond}
|
890 |
+
|
891 |
+
if hasattr(self, "split_input_params"):
|
892 |
+
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
893 |
+
assert not return_ids
|
894 |
+
ks = self.split_input_params["ks"] # eg. (128, 128)
|
895 |
+
stride = self.split_input_params["stride"] # eg. (64, 64)
|
896 |
+
|
897 |
+
h, w = x_noisy.shape[-2:]
|
898 |
+
|
899 |
+
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
900 |
+
|
901 |
+
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
902 |
+
# Reshape to img shape
|
903 |
+
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
904 |
+
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
905 |
+
|
906 |
+
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
907 |
+
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
908 |
+
c_key = next(iter(cond.keys())) # get key
|
909 |
+
c = next(iter(cond.values())) # get value
|
910 |
+
assert (len(c) == 1) # todo extend to list with more than one elem
|
911 |
+
c = c[0] # get element
|
912 |
+
|
913 |
+
c = unfold(c)
|
914 |
+
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
915 |
+
|
916 |
+
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
917 |
+
|
918 |
+
elif self.cond_stage_key == 'coordinates_bbox':
|
919 |
+
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
920 |
+
|
921 |
+
# assuming padding of unfold is always 0 and its dilation is always 1
|
922 |
+
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
923 |
+
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
924 |
+
# as we are operating on latents, we need the factor from the original image size to the
|
925 |
+
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
926 |
+
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
927 |
+
rescale_latent = 2 ** (num_downs)
|
928 |
+
|
929 |
+
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
930 |
+
# need to rescale the tl patch coordinates to be in between (0,1)
|
931 |
+
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
932 |
+
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
933 |
+
for patch_nr in range(z.shape[-1])]
|
934 |
+
|
935 |
+
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
936 |
+
patch_limits = [(x_tl, y_tl,
|
937 |
+
rescale_latent * ks[0] / full_img_w,
|
938 |
+
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
939 |
+
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
940 |
+
|
941 |
+
# tokenize crop coordinates for the bounding boxes of the respective patches
|
942 |
+
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
943 |
+
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
944 |
+
print(patch_limits_tknzd[0].shape)
|
945 |
+
# cut tknzd crop position from conditioning
|
946 |
+
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
947 |
+
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
948 |
+
print(cut_cond.shape)
|
949 |
+
|
950 |
+
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
951 |
+
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
952 |
+
print(adapted_cond.shape)
|
953 |
+
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
954 |
+
print(adapted_cond.shape)
|
955 |
+
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
956 |
+
print(adapted_cond.shape)
|
957 |
+
|
958 |
+
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
959 |
+
|
960 |
+
else:
|
961 |
+
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
962 |
+
|
963 |
+
# apply model by loop over crops
|
964 |
+
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
965 |
+
assert not isinstance(output_list[0],
|
966 |
+
tuple) # todo cant deal with multiple model outputs check this never happens
|
967 |
+
|
968 |
+
o = torch.stack(output_list, axis=-1)
|
969 |
+
o = o * weighting
|
970 |
+
# Reverse reshape to img shape
|
971 |
+
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
972 |
+
# stitch crops together
|
973 |
+
x_recon = fold(o) / normalization
|
974 |
+
|
975 |
+
else:
|
976 |
+
x_recon = self.model(x_noisy, t, **cond)
|
977 |
+
|
978 |
+
if isinstance(x_recon, tuple) and not return_ids:
|
979 |
+
return x_recon[0]
|
980 |
+
else:
|
981 |
+
return x_recon
|
982 |
+
|
983 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
984 |
+
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
985 |
+
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
986 |
+
|
987 |
+
def _prior_bpd(self, x_start):
|
988 |
+
"""
|
989 |
+
Get the prior KL term for the variational lower-bound, measured in
|
990 |
+
bits-per-dim.
|
991 |
+
This term can't be optimized, as it only depends on the encoder.
|
992 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
993 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
994 |
+
"""
|
995 |
+
batch_size = x_start.shape[0]
|
996 |
+
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
997 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
998 |
+
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
999 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1000 |
+
|
1001 |
+
def p_losses(self, x_start, cond, t, noise=None):
|
1002 |
+
noise = default(noise, lambda: torch.randn_like(x_start))
|
1003 |
+
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1004 |
+
model_output = self.apply_model(x_noisy, t, cond)
|
1005 |
+
|
1006 |
+
loss_dict = {}
|
1007 |
+
prefix = 'train' if self.training else 'val'
|
1008 |
+
|
1009 |
+
if self.parameterization == "x0":
|
1010 |
+
target = x_start
|
1011 |
+
elif self.parameterization == "eps":
|
1012 |
+
target = noise
|
1013 |
+
else:
|
1014 |
+
raise NotImplementedError()
|
1015 |
+
|
1016 |
+
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1017 |
+
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1018 |
+
|
1019 |
+
logvar_t = self.logvar[t].to(self.device)
|
1020 |
+
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1021 |
+
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1022 |
+
if self.learn_logvar:
|
1023 |
+
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1024 |
+
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1025 |
+
|
1026 |
+
loss = self.l_simple_weight * loss.mean()
|
1027 |
+
|
1028 |
+
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1029 |
+
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1030 |
+
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1031 |
+
loss += (self.original_elbo_weight * loss_vlb)
|
1032 |
+
loss_dict.update({f'{prefix}/loss': loss})
|
1033 |
+
|
1034 |
+
return loss, loss_dict
|
1035 |
+
|
1036 |
+
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1037 |
+
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1038 |
+
t_in = t
|
1039 |
+
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1040 |
+
|
1041 |
+
if score_corrector is not None:
|
1042 |
+
assert self.parameterization == "eps"
|
1043 |
+
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1044 |
+
|
1045 |
+
if return_codebook_ids:
|
1046 |
+
model_out, logits = model_out
|
1047 |
+
|
1048 |
+
if self.parameterization == "eps":
|
1049 |
+
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1050 |
+
elif self.parameterization == "x0":
|
1051 |
+
x_recon = model_out
|
1052 |
+
else:
|
1053 |
+
raise NotImplementedError()
|
1054 |
+
|
1055 |
+
if clip_denoised:
|
1056 |
+
x_recon.clamp_(-1., 1.)
|
1057 |
+
if quantize_denoised:
|
1058 |
+
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1059 |
+
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1060 |
+
if return_codebook_ids:
|
1061 |
+
return model_mean, posterior_variance, posterior_log_variance, logits
|
1062 |
+
elif return_x0:
|
1063 |
+
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1064 |
+
else:
|
1065 |
+
return model_mean, posterior_variance, posterior_log_variance
|
1066 |
+
|
1067 |
+
@torch.no_grad()
|
1068 |
+
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1069 |
+
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1070 |
+
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1071 |
+
b, *_, device = *x.shape, x.device
|
1072 |
+
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1073 |
+
return_codebook_ids=return_codebook_ids,
|
1074 |
+
quantize_denoised=quantize_denoised,
|
1075 |
+
return_x0=return_x0,
|
1076 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1077 |
+
if return_codebook_ids:
|
1078 |
+
raise DeprecationWarning("Support dropped.")
|
1079 |
+
model_mean, _, model_log_variance, logits = outputs
|
1080 |
+
elif return_x0:
|
1081 |
+
model_mean, _, model_log_variance, x0 = outputs
|
1082 |
+
else:
|
1083 |
+
model_mean, _, model_log_variance = outputs
|
1084 |
+
|
1085 |
+
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1086 |
+
if noise_dropout > 0.:
|
1087 |
+
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1088 |
+
# no noise when t == 0
|
1089 |
+
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1090 |
+
|
1091 |
+
if return_codebook_ids:
|
1092 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1093 |
+
if return_x0:
|
1094 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1095 |
+
else:
|
1096 |
+
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1097 |
+
|
1098 |
+
@torch.no_grad()
|
1099 |
+
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1100 |
+
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1101 |
+
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1102 |
+
log_every_t=None):
|
1103 |
+
if not log_every_t:
|
1104 |
+
log_every_t = self.log_every_t
|
1105 |
+
timesteps = self.num_timesteps
|
1106 |
+
if batch_size is not None:
|
1107 |
+
b = batch_size if batch_size is not None else shape[0]
|
1108 |
+
shape = [batch_size] + list(shape)
|
1109 |
+
else:
|
1110 |
+
b = batch_size = shape[0]
|
1111 |
+
if x_T is None:
|
1112 |
+
img = torch.randn(shape, device=self.device)
|
1113 |
+
else:
|
1114 |
+
img = x_T
|
1115 |
+
intermediates = []
|
1116 |
+
if cond is not None:
|
1117 |
+
if isinstance(cond, dict):
|
1118 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1119 |
+
[x[:batch_size] for x in cond[key]] for key in cond}
|
1120 |
+
else:
|
1121 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1122 |
+
|
1123 |
+
if start_T is not None:
|
1124 |
+
timesteps = min(timesteps, start_T)
|
1125 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1126 |
+
total=timesteps) if verbose else reversed(
|
1127 |
+
range(0, timesteps))
|
1128 |
+
if type(temperature) == float:
|
1129 |
+
temperature = [temperature] * timesteps
|
1130 |
+
|
1131 |
+
for i in iterator:
|
1132 |
+
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1133 |
+
if self.shorten_cond_schedule:
|
1134 |
+
assert self.model.conditioning_key != 'hybrid'
|
1135 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1136 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1137 |
+
|
1138 |
+
img, x0_partial = self.p_sample(img, cond, ts,
|
1139 |
+
clip_denoised=self.clip_denoised,
|
1140 |
+
quantize_denoised=quantize_denoised, return_x0=True,
|
1141 |
+
temperature=temperature[i], noise_dropout=noise_dropout,
|
1142 |
+
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1143 |
+
if mask is not None:
|
1144 |
+
assert x0 is not None
|
1145 |
+
img_orig = self.q_sample(x0, ts)
|
1146 |
+
img = img_orig * mask + (1. - mask) * img
|
1147 |
+
|
1148 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1149 |
+
intermediates.append(x0_partial)
|
1150 |
+
if callback:
|
1151 |
+
callback(i)
|
1152 |
+
if img_callback:
|
1153 |
+
img_callback(img, i)
|
1154 |
+
return img, intermediates
|
1155 |
+
|
1156 |
+
@torch.no_grad()
|
1157 |
+
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1158 |
+
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1159 |
+
mask=None, x0=None, img_callback=None, start_T=None,
|
1160 |
+
log_every_t=None):
|
1161 |
+
|
1162 |
+
if not log_every_t:
|
1163 |
+
log_every_t = self.log_every_t
|
1164 |
+
device = self.betas.device
|
1165 |
+
b = shape[0]
|
1166 |
+
if x_T is None:
|
1167 |
+
img = torch.randn(shape, device=device)
|
1168 |
+
else:
|
1169 |
+
img = x_T
|
1170 |
+
|
1171 |
+
intermediates = [img]
|
1172 |
+
if timesteps is None:
|
1173 |
+
timesteps = self.num_timesteps
|
1174 |
+
|
1175 |
+
if start_T is not None:
|
1176 |
+
timesteps = min(timesteps, start_T)
|
1177 |
+
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1178 |
+
range(0, timesteps))
|
1179 |
+
|
1180 |
+
if mask is not None:
|
1181 |
+
assert x0 is not None
|
1182 |
+
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1183 |
+
|
1184 |
+
for i in iterator:
|
1185 |
+
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1186 |
+
if self.shorten_cond_schedule:
|
1187 |
+
assert self.model.conditioning_key != 'hybrid'
|
1188 |
+
tc = self.cond_ids[ts].to(cond.device)
|
1189 |
+
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1190 |
+
|
1191 |
+
img = self.p_sample(img, cond, ts,
|
1192 |
+
clip_denoised=self.clip_denoised,
|
1193 |
+
quantize_denoised=quantize_denoised)
|
1194 |
+
if mask is not None:
|
1195 |
+
img_orig = self.q_sample(x0, ts)
|
1196 |
+
img = img_orig * mask + (1. - mask) * img
|
1197 |
+
|
1198 |
+
if i % log_every_t == 0 or i == timesteps - 1:
|
1199 |
+
intermediates.append(img)
|
1200 |
+
if callback:
|
1201 |
+
callback(i)
|
1202 |
+
if img_callback:
|
1203 |
+
img_callback(img, i)
|
1204 |
+
|
1205 |
+
if return_intermediates:
|
1206 |
+
return img, intermediates
|
1207 |
+
return img
|
1208 |
+
|
1209 |
+
@torch.no_grad()
|
1210 |
+
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1211 |
+
verbose=True, timesteps=None, quantize_denoised=False,
|
1212 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1213 |
+
if shape is None:
|
1214 |
+
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1215 |
+
if cond is not None:
|
1216 |
+
if isinstance(cond, dict):
|
1217 |
+
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1218 |
+
[x[:batch_size] for x in cond[key]] for key in cond}
|
1219 |
+
else:
|
1220 |
+
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1221 |
+
return self.p_sample_loop(cond,
|
1222 |
+
shape,
|
1223 |
+
return_intermediates=return_intermediates, x_T=x_T,
|
1224 |
+
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1225 |
+
mask=mask, x0=x0)
|
1226 |
+
|
1227 |
+
@torch.no_grad()
|
1228 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1229 |
+
|
1230 |
+
if ddim:
|
1231 |
+
ddim_sampler = DDIMSampler(self)
|
1232 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1233 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1234 |
+
shape,cond,verbose=False,**kwargs)
|
1235 |
+
|
1236 |
+
else:
|
1237 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1238 |
+
return_intermediates=True,**kwargs)
|
1239 |
+
|
1240 |
+
return samples, intermediates
|
1241 |
+
|
1242 |
+
|
1243 |
+
@torch.no_grad()
|
1244 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1245 |
+
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1246 |
+
plot_diffusion_rows=True, **kwargs):
|
1247 |
+
|
1248 |
+
use_ddim = ddim_steps is not None
|
1249 |
+
|
1250 |
+
log = {}
|
1251 |
+
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1252 |
+
return_first_stage_outputs=True,
|
1253 |
+
force_c_encode=True,
|
1254 |
+
return_original_cond=True,
|
1255 |
+
bs=N)
|
1256 |
+
N = min(x.shape[0], N)
|
1257 |
+
n_row = min(x.shape[0], n_row)
|
1258 |
+
log["inputs"] = x
|
1259 |
+
log["reconstruction"] = xrec
|
1260 |
+
if self.model.conditioning_key is not None:
|
1261 |
+
if hasattr(self.cond_stage_model, "decode"):
|
1262 |
+
xc = self.cond_stage_model.decode(c)
|
1263 |
+
log["conditioning"] = xc
|
1264 |
+
elif self.cond_stage_key in ["caption"]:
|
1265 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
|
1266 |
+
log["conditioning"] = xc
|
1267 |
+
elif self.cond_stage_key == 'class_label':
|
1268 |
+
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
1269 |
+
log['conditioning'] = xc
|
1270 |
+
elif isimage(xc):
|
1271 |
+
log["conditioning"] = xc
|
1272 |
+
if ismap(xc):
|
1273 |
+
log["original_conditioning"] = self.to_rgb(xc)
|
1274 |
+
|
1275 |
+
if plot_diffusion_rows:
|
1276 |
+
# get diffusion row
|
1277 |
+
diffusion_row = []
|
1278 |
+
z_start = z[:n_row]
|
1279 |
+
for t in range(self.num_timesteps):
|
1280 |
+
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1281 |
+
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1282 |
+
t = t.to(self.device).long()
|
1283 |
+
noise = torch.randn_like(z_start)
|
1284 |
+
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1285 |
+
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1286 |
+
|
1287 |
+
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1288 |
+
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1289 |
+
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1290 |
+
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1291 |
+
log["diffusion_row"] = diffusion_grid
|
1292 |
+
|
1293 |
+
if sample:
|
1294 |
+
# get denoise row
|
1295 |
+
with self.ema_scope("Plotting"):
|
1296 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1297 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1298 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1299 |
+
x_samples = self.decode_first_stage(samples)
|
1300 |
+
log["samples"] = x_samples
|
1301 |
+
if plot_denoise_rows:
|
1302 |
+
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1303 |
+
log["denoise_row"] = denoise_grid
|
1304 |
+
|
1305 |
+
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1306 |
+
self.first_stage_model, IdentityFirstStage):
|
1307 |
+
# also display when quantizing x0 while sampling
|
1308 |
+
with self.ema_scope("Plotting Quantized Denoised"):
|
1309 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1310 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1311 |
+
quantize_denoised=True)
|
1312 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1313 |
+
# quantize_denoised=True)
|
1314 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1315 |
+
log["samples_x0_quantized"] = x_samples
|
1316 |
+
|
1317 |
+
if inpaint:
|
1318 |
+
# make a simple center square
|
1319 |
+
h, w = z.shape[2], z.shape[3]
|
1320 |
+
mask = torch.ones(N, h, w).to(self.device)
|
1321 |
+
# zeros will be filled in
|
1322 |
+
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1323 |
+
mask = mask[:, None, ...]
|
1324 |
+
with self.ema_scope("Plotting Inpaint"):
|
1325 |
+
|
1326 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1327 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1328 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1329 |
+
log["samples_inpainting"] = x_samples
|
1330 |
+
log["mask"] = mask
|
1331 |
+
|
1332 |
+
# outpaint
|
1333 |
+
with self.ema_scope("Plotting Outpaint"):
|
1334 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1335 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1336 |
+
x_samples = self.decode_first_stage(samples.to(self.device))
|
1337 |
+
log["samples_outpainting"] = x_samples
|
1338 |
+
|
1339 |
+
if plot_progressive_rows:
|
1340 |
+
with self.ema_scope("Plotting Progressives"):
|
1341 |
+
img, progressives = self.progressive_denoising(c,
|
1342 |
+
shape=(self.channels, self.image_size, self.image_size),
|
1343 |
+
batch_size=N)
|
1344 |
+
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1345 |
+
log["progressive_row"] = prog_row
|
1346 |
+
|
1347 |
+
if return_keys:
|
1348 |
+
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1349 |
+
return log
|
1350 |
+
else:
|
1351 |
+
return {key: log[key] for key in return_keys}
|
1352 |
+
return log
|
1353 |
+
|
1354 |
+
def configure_optimizers(self):
|
1355 |
+
lr = self.learning_rate
|
1356 |
+
params = list(self.model.parameters())
|
1357 |
+
if self.cond_stage_trainable:
|
1358 |
+
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1359 |
+
params = params + list(self.cond_stage_model.parameters())
|
1360 |
+
if self.learn_logvar:
|
1361 |
+
print('Diffusion model optimizing logvar')
|
1362 |
+
params.append(self.logvar)
|
1363 |
+
opt = torch.optim.AdamW(params, lr=lr)
|
1364 |
+
if self.use_scheduler:
|
1365 |
+
assert 'target' in self.scheduler_config
|
1366 |
+
scheduler = instantiate_from_config(self.scheduler_config)
|
1367 |
+
|
1368 |
+
print("Setting up LambdaLR scheduler...")
|
1369 |
+
scheduler = [
|
1370 |
+
{
|
1371 |
+
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1372 |
+
'interval': 'step',
|
1373 |
+
'frequency': 1
|
1374 |
+
}]
|
1375 |
+
return [opt], scheduler
|
1376 |
+
return opt
|
1377 |
+
|
1378 |
+
@torch.no_grad()
|
1379 |
+
def to_rgb(self, x):
|
1380 |
+
x = x.float()
|
1381 |
+
if not hasattr(self, "colorize"):
|
1382 |
+
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1383 |
+
x = nn.functional.conv2d(x, weight=self.colorize)
|
1384 |
+
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1385 |
+
return x
|
1386 |
+
|
1387 |
+
|
1388 |
+
class DiffusionWrapperV1(pl.LightningModule):
|
1389 |
+
def __init__(self, diff_model_config, conditioning_key):
|
1390 |
+
super().__init__()
|
1391 |
+
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1392 |
+
self.conditioning_key = conditioning_key
|
1393 |
+
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
|
1394 |
+
|
1395 |
+
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
|
1396 |
+
if self.conditioning_key is None:
|
1397 |
+
out = self.diffusion_model(x, t)
|
1398 |
+
elif self.conditioning_key == 'concat':
|
1399 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1400 |
+
out = self.diffusion_model(xc, t)
|
1401 |
+
elif self.conditioning_key == 'crossattn':
|
1402 |
+
cc = torch.cat(c_crossattn, 1)
|
1403 |
+
out = self.diffusion_model(x, t, context=cc)
|
1404 |
+
elif self.conditioning_key == 'hybrid':
|
1405 |
+
xc = torch.cat([x] + c_concat, dim=1)
|
1406 |
+
cc = torch.cat(c_crossattn, 1)
|
1407 |
+
out = self.diffusion_model(xc, t, context=cc)
|
1408 |
+
elif self.conditioning_key == 'adm':
|
1409 |
+
cc = c_crossattn[0]
|
1410 |
+
out = self.diffusion_model(x, t, y=cc)
|
1411 |
+
else:
|
1412 |
+
raise NotImplementedError()
|
1413 |
+
|
1414 |
+
return out
|
1415 |
+
|
1416 |
+
|
1417 |
+
class Layout2ImgDiffusionV1(LatentDiffusionV1):
|
1418 |
+
# TODO: move all layout-specific hacks to this class
|
1419 |
+
def __init__(self, cond_stage_key, *args, **kwargs):
|
1420 |
+
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1421 |
+
super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)
|
1422 |
+
|
1423 |
+
def log_images(self, batch, N=8, *args, **kwargs):
|
1424 |
+
logs = super().log_images(*args, batch=batch, N=N, **kwargs)
|
1425 |
+
|
1426 |
+
key = 'train' if self.training else 'validation'
|
1427 |
+
dset = self.trainer.datamodule.datasets[key]
|
1428 |
+
mapper = dset.conditional_builders[self.cond_stage_key]
|
1429 |
+
|
1430 |
+
bbox_imgs = []
|
1431 |
+
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1432 |
+
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1433 |
+
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1434 |
+
bbox_imgs.append(bboximg)
|
1435 |
+
|
1436 |
+
cond_img = torch.stack(bbox_imgs, dim=0)
|
1437 |
+
logs['bbox_image'] = cond_img
|
1438 |
+
return logs
|
1439 |
+
|
1440 |
+
ldm.models.diffusion.ddpm.DDPMV1 = DDPMV1
|
1441 |
+
ldm.models.diffusion.ddpm.LatentDiffusionV1 = LatentDiffusionV1
|
1442 |
+
ldm.models.diffusion.ddpm.DiffusionWrapperV1 = DiffusionWrapperV1
|
1443 |
+
ldm.models.diffusion.ddpm.Layout2ImgDiffusionV1 = Layout2ImgDiffusionV1
|
extensions-builtin/LDSR/vqvae_quantize.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Vendored from https://raw.githubusercontent.com/CompVis/taming-transformers/24268930bf1dce879235a7fddd0b2355b84d7ea6/taming/modules/vqvae/quantize.py,
|
2 |
+
# where the license is as follows:
|
3 |
+
#
|
4 |
+
# Copyright (c) 2020 Patrick Esser and Robin Rombach and Björn Ommer
|
5 |
+
#
|
6 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
+
# of this software and associated documentation files (the "Software"), to deal
|
8 |
+
# in the Software without restriction, including without limitation the rights
|
9 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
+
# copies of the Software, and to permit persons to whom the Software is
|
11 |
+
# furnished to do so, subject to the following conditions:
|
12 |
+
#
|
13 |
+
# The above copyright notice and this permission notice shall be included in all
|
14 |
+
# copies or substantial portions of the Software.
|
15 |
+
#
|
16 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17 |
+
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18 |
+
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
19 |
+
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
20 |
+
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
21 |
+
# OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
|
22 |
+
# OR OTHER DEALINGS IN THE SOFTWARE./
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
import numpy as np
|
27 |
+
from einops import rearrange
|
28 |
+
|
29 |
+
|
30 |
+
class VectorQuantizer2(nn.Module):
|
31 |
+
"""
|
32 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
33 |
+
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
34 |
+
"""
|
35 |
+
|
36 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
37 |
+
# backwards compatibility we use the buggy version by default, but you can
|
38 |
+
# specify legacy=False to fix it.
|
39 |
+
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random",
|
40 |
+
sane_index_shape=False, legacy=True):
|
41 |
+
super().__init__()
|
42 |
+
self.n_e = n_e
|
43 |
+
self.e_dim = e_dim
|
44 |
+
self.beta = beta
|
45 |
+
self.legacy = legacy
|
46 |
+
|
47 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
48 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
49 |
+
|
50 |
+
self.remap = remap
|
51 |
+
if self.remap is not None:
|
52 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
53 |
+
self.re_embed = self.used.shape[0]
|
54 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
55 |
+
if self.unknown_index == "extra":
|
56 |
+
self.unknown_index = self.re_embed
|
57 |
+
self.re_embed = self.re_embed + 1
|
58 |
+
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
59 |
+
f"Using {self.unknown_index} for unknown indices.")
|
60 |
+
else:
|
61 |
+
self.re_embed = n_e
|
62 |
+
|
63 |
+
self.sane_index_shape = sane_index_shape
|
64 |
+
|
65 |
+
def remap_to_used(self, inds):
|
66 |
+
ishape = inds.shape
|
67 |
+
assert len(ishape) > 1
|
68 |
+
inds = inds.reshape(ishape[0], -1)
|
69 |
+
used = self.used.to(inds)
|
70 |
+
match = (inds[:, :, None] == used[None, None, ...]).long()
|
71 |
+
new = match.argmax(-1)
|
72 |
+
unknown = match.sum(2) < 1
|
73 |
+
if self.unknown_index == "random":
|
74 |
+
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
75 |
+
else:
|
76 |
+
new[unknown] = self.unknown_index
|
77 |
+
return new.reshape(ishape)
|
78 |
+
|
79 |
+
def unmap_to_all(self, inds):
|
80 |
+
ishape = inds.shape
|
81 |
+
assert len(ishape) > 1
|
82 |
+
inds = inds.reshape(ishape[0], -1)
|
83 |
+
used = self.used.to(inds)
|
84 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
85 |
+
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
86 |
+
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
87 |
+
return back.reshape(ishape)
|
88 |
+
|
89 |
+
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
90 |
+
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
91 |
+
assert rescale_logits is False, "Only for interface compatible with Gumbel"
|
92 |
+
assert return_logits is False, "Only for interface compatible with Gumbel"
|
93 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
94 |
+
z = rearrange(z, 'b c h w -> b h w c').contiguous()
|
95 |
+
z_flattened = z.view(-1, self.e_dim)
|
96 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
97 |
+
|
98 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
99 |
+
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
|
100 |
+
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
|
101 |
+
|
102 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
103 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
104 |
+
perplexity = None
|
105 |
+
min_encodings = None
|
106 |
+
|
107 |
+
# compute loss for embedding
|
108 |
+
if not self.legacy:
|
109 |
+
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \
|
110 |
+
torch.mean((z_q - z.detach()) ** 2)
|
111 |
+
else:
|
112 |
+
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \
|
113 |
+
torch.mean((z_q - z.detach()) ** 2)
|
114 |
+
|
115 |
+
# preserve gradients
|
116 |
+
z_q = z + (z_q - z).detach()
|
117 |
+
|
118 |
+
# reshape back to match original input shape
|
119 |
+
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
|
120 |
+
|
121 |
+
if self.remap is not None:
|
122 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
123 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
124 |
+
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
125 |
+
|
126 |
+
if self.sane_index_shape:
|
127 |
+
min_encoding_indices = min_encoding_indices.reshape(
|
128 |
+
z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
129 |
+
|
130 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
131 |
+
|
132 |
+
def get_codebook_entry(self, indices, shape):
|
133 |
+
# shape specifying (batch, height, width, channel)
|
134 |
+
if self.remap is not None:
|
135 |
+
indices = indices.reshape(shape[0], -1) # add batch axis
|
136 |
+
indices = self.unmap_to_all(indices)
|
137 |
+
indices = indices.reshape(-1) # flatten again
|
138 |
+
|
139 |
+
# get quantized latent vectors
|
140 |
+
z_q = self.embedding(indices)
|
141 |
+
|
142 |
+
if shape is not None:
|
143 |
+
z_q = z_q.view(shape)
|
144 |
+
# reshape back to match original input shape
|
145 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
146 |
+
|
147 |
+
return z_q
|
extensions-builtin/Lora/extra_networks_lora.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules import extra_networks, shared
|
2 |
+
import lora
|
3 |
+
|
4 |
+
|
5 |
+
class ExtraNetworkLora(extra_networks.ExtraNetwork):
|
6 |
+
def __init__(self):
|
7 |
+
super().__init__('lora')
|
8 |
+
|
9 |
+
def activate(self, p, params_list):
|
10 |
+
additional = shared.opts.sd_lora
|
11 |
+
|
12 |
+
if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional):
|
13 |
+
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
|
14 |
+
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
|
15 |
+
|
16 |
+
names = []
|
17 |
+
multipliers = []
|
18 |
+
for params in params_list:
|
19 |
+
assert params.items
|
20 |
+
|
21 |
+
names.append(params.items[0])
|
22 |
+
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
|
23 |
+
|
24 |
+
lora.load_loras(names, multipliers)
|
25 |
+
|
26 |
+
if shared.opts.lora_add_hashes_to_infotext:
|
27 |
+
lora_hashes = []
|
28 |
+
for item in lora.loaded_loras:
|
29 |
+
shorthash = item.lora_on_disk.shorthash
|
30 |
+
if not shorthash:
|
31 |
+
continue
|
32 |
+
|
33 |
+
alias = item.mentioned_name
|
34 |
+
if not alias:
|
35 |
+
continue
|
36 |
+
|
37 |
+
alias = alias.replace(":", "").replace(",", "")
|
38 |
+
|
39 |
+
lora_hashes.append(f"{alias}: {shorthash}")
|
40 |
+
|
41 |
+
if lora_hashes:
|
42 |
+
p.extra_generation_params["Lora hashes"] = ", ".join(lora_hashes)
|
43 |
+
|
44 |
+
def deactivate(self, p):
|
45 |
+
pass
|
extensions-builtin/Lora/lora.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
from modules import shared, devices, sd_models, errors, scripts, sd_hijack, hashes
|
7 |
+
|
8 |
+
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
|
9 |
+
|
10 |
+
re_digits = re.compile(r"\d+")
|
11 |
+
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
|
12 |
+
re_compiled = {}
|
13 |
+
|
14 |
+
suffix_conversion = {
|
15 |
+
"attentions": {},
|
16 |
+
"resnets": {
|
17 |
+
"conv1": "in_layers_2",
|
18 |
+
"conv2": "out_layers_3",
|
19 |
+
"time_emb_proj": "emb_layers_1",
|
20 |
+
"conv_shortcut": "skip_connection",
|
21 |
+
}
|
22 |
+
}
|
23 |
+
|
24 |
+
|
25 |
+
def convert_diffusers_name_to_compvis(key, is_sd2):
|
26 |
+
def match(match_list, regex_text):
|
27 |
+
regex = re_compiled.get(regex_text)
|
28 |
+
if regex is None:
|
29 |
+
regex = re.compile(regex_text)
|
30 |
+
re_compiled[regex_text] = regex
|
31 |
+
|
32 |
+
r = re.match(regex, key)
|
33 |
+
if not r:
|
34 |
+
return False
|
35 |
+
|
36 |
+
match_list.clear()
|
37 |
+
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
38 |
+
return True
|
39 |
+
|
40 |
+
m = []
|
41 |
+
|
42 |
+
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
43 |
+
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
44 |
+
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
45 |
+
|
46 |
+
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
|
47 |
+
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
|
48 |
+
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
|
49 |
+
|
50 |
+
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
51 |
+
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
52 |
+
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
53 |
+
|
54 |
+
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
|
55 |
+
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
|
56 |
+
|
57 |
+
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
|
58 |
+
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
|
59 |
+
|
60 |
+
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
|
61 |
+
if is_sd2:
|
62 |
+
if 'mlp_fc1' in m[1]:
|
63 |
+
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
64 |
+
elif 'mlp_fc2' in m[1]:
|
65 |
+
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
66 |
+
else:
|
67 |
+
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
68 |
+
|
69 |
+
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
70 |
+
|
71 |
+
return key
|
72 |
+
|
73 |
+
|
74 |
+
class LoraOnDisk:
|
75 |
+
def __init__(self, name, filename):
|
76 |
+
self.name = name
|
77 |
+
self.filename = filename
|
78 |
+
self.metadata = {}
|
79 |
+
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
|
80 |
+
|
81 |
+
if self.is_safetensors:
|
82 |
+
try:
|
83 |
+
self.metadata = sd_models.read_metadata_from_safetensors(filename)
|
84 |
+
except Exception as e:
|
85 |
+
errors.display(e, f"reading lora {filename}")
|
86 |
+
|
87 |
+
if self.metadata:
|
88 |
+
m = {}
|
89 |
+
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
|
90 |
+
m[k] = v
|
91 |
+
|
92 |
+
self.metadata = m
|
93 |
+
|
94 |
+
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
|
95 |
+
self.alias = self.metadata.get('ss_output_name', self.name)
|
96 |
+
|
97 |
+
self.hash = None
|
98 |
+
self.shorthash = None
|
99 |
+
self.set_hash(
|
100 |
+
self.metadata.get('sshs_model_hash') or
|
101 |
+
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
|
102 |
+
''
|
103 |
+
)
|
104 |
+
|
105 |
+
def set_hash(self, v):
|
106 |
+
self.hash = v
|
107 |
+
self.shorthash = self.hash[0:12]
|
108 |
+
|
109 |
+
if self.shorthash:
|
110 |
+
available_lora_hash_lookup[self.shorthash] = self
|
111 |
+
|
112 |
+
def read_hash(self):
|
113 |
+
if not self.hash:
|
114 |
+
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
|
115 |
+
|
116 |
+
def get_alias(self):
|
117 |
+
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in forbidden_lora_aliases:
|
118 |
+
return self.name
|
119 |
+
else:
|
120 |
+
return self.alias
|
121 |
+
|
122 |
+
|
123 |
+
class LoraModule:
|
124 |
+
def __init__(self, name, lora_on_disk: LoraOnDisk):
|
125 |
+
self.name = name
|
126 |
+
self.lora_on_disk = lora_on_disk
|
127 |
+
self.multiplier = 1.0
|
128 |
+
self.modules = {}
|
129 |
+
self.mtime = None
|
130 |
+
|
131 |
+
self.mentioned_name = None
|
132 |
+
"""the text that was used to add lora to prompt - can be either name or an alias"""
|
133 |
+
|
134 |
+
|
135 |
+
class LoraUpDownModule:
|
136 |
+
def __init__(self):
|
137 |
+
self.up = None
|
138 |
+
self.down = None
|
139 |
+
self.alpha = None
|
140 |
+
|
141 |
+
|
142 |
+
def assign_lora_names_to_compvis_modules(sd_model):
|
143 |
+
lora_layer_mapping = {}
|
144 |
+
|
145 |
+
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
|
146 |
+
lora_name = name.replace(".", "_")
|
147 |
+
lora_layer_mapping[lora_name] = module
|
148 |
+
module.lora_layer_name = lora_name
|
149 |
+
|
150 |
+
for name, module in shared.sd_model.model.named_modules():
|
151 |
+
lora_name = name.replace(".", "_")
|
152 |
+
lora_layer_mapping[lora_name] = module
|
153 |
+
module.lora_layer_name = lora_name
|
154 |
+
|
155 |
+
sd_model.lora_layer_mapping = lora_layer_mapping
|
156 |
+
|
157 |
+
|
158 |
+
def load_lora(name, lora_on_disk):
|
159 |
+
lora = LoraModule(name, lora_on_disk)
|
160 |
+
lora.mtime = os.path.getmtime(lora_on_disk.filename)
|
161 |
+
|
162 |
+
sd = sd_models.read_state_dict(lora_on_disk.filename)
|
163 |
+
|
164 |
+
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
|
165 |
+
if not hasattr(shared.sd_model, 'lora_layer_mapping'):
|
166 |
+
assign_lora_names_to_compvis_modules(shared.sd_model)
|
167 |
+
|
168 |
+
keys_failed_to_match = {}
|
169 |
+
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
|
170 |
+
|
171 |
+
for key_diffusers, weight in sd.items():
|
172 |
+
key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1)
|
173 |
+
key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2)
|
174 |
+
|
175 |
+
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
176 |
+
|
177 |
+
if sd_module is None:
|
178 |
+
m = re_x_proj.match(key)
|
179 |
+
if m:
|
180 |
+
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
|
181 |
+
|
182 |
+
if sd_module is None:
|
183 |
+
keys_failed_to_match[key_diffusers] = key
|
184 |
+
continue
|
185 |
+
|
186 |
+
lora_module = lora.modules.get(key, None)
|
187 |
+
if lora_module is None:
|
188 |
+
lora_module = LoraUpDownModule()
|
189 |
+
lora.modules[key] = lora_module
|
190 |
+
|
191 |
+
if lora_key == "alpha":
|
192 |
+
lora_module.alpha = weight.item()
|
193 |
+
continue
|
194 |
+
|
195 |
+
if type(sd_module) == torch.nn.Linear:
|
196 |
+
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
197 |
+
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
|
198 |
+
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
199 |
+
elif type(sd_module) == torch.nn.MultiheadAttention:
|
200 |
+
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
201 |
+
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
|
202 |
+
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
203 |
+
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
|
204 |
+
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
|
205 |
+
else:
|
206 |
+
print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}')
|
207 |
+
continue
|
208 |
+
raise AssertionError(f"Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}")
|
209 |
+
|
210 |
+
with torch.no_grad():
|
211 |
+
module.weight.copy_(weight)
|
212 |
+
|
213 |
+
module.to(device=devices.cpu, dtype=devices.dtype)
|
214 |
+
|
215 |
+
if lora_key == "lora_up.weight":
|
216 |
+
lora_module.up = module
|
217 |
+
elif lora_key == "lora_down.weight":
|
218 |
+
lora_module.down = module
|
219 |
+
else:
|
220 |
+
raise AssertionError(f"Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha")
|
221 |
+
|
222 |
+
if keys_failed_to_match:
|
223 |
+
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}")
|
224 |
+
|
225 |
+
return lora
|
226 |
+
|
227 |
+
|
228 |
+
def load_loras(names, multipliers=None):
|
229 |
+
already_loaded = {}
|
230 |
+
|
231 |
+
for lora in loaded_loras:
|
232 |
+
if lora.name in names:
|
233 |
+
already_loaded[lora.name] = lora
|
234 |
+
|
235 |
+
loaded_loras.clear()
|
236 |
+
|
237 |
+
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
|
238 |
+
if any(x is None for x in loras_on_disk):
|
239 |
+
list_available_loras()
|
240 |
+
|
241 |
+
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
|
242 |
+
|
243 |
+
failed_to_load_loras = []
|
244 |
+
|
245 |
+
for i, name in enumerate(names):
|
246 |
+
lora = already_loaded.get(name, None)
|
247 |
+
|
248 |
+
lora_on_disk = loras_on_disk[i]
|
249 |
+
|
250 |
+
if lora_on_disk is not None:
|
251 |
+
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
|
252 |
+
try:
|
253 |
+
lora = load_lora(name, lora_on_disk)
|
254 |
+
except Exception as e:
|
255 |
+
errors.display(e, f"loading Lora {lora_on_disk.filename}")
|
256 |
+
continue
|
257 |
+
|
258 |
+
lora.mentioned_name = name
|
259 |
+
|
260 |
+
lora_on_disk.read_hash()
|
261 |
+
|
262 |
+
if lora is None:
|
263 |
+
failed_to_load_loras.append(name)
|
264 |
+
print(f"Couldn't find Lora with name {name}")
|
265 |
+
continue
|
266 |
+
|
267 |
+
lora.multiplier = multipliers[i] if multipliers else 1.0
|
268 |
+
loaded_loras.append(lora)
|
269 |
+
|
270 |
+
if failed_to_load_loras:
|
271 |
+
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras))
|
272 |
+
|
273 |
+
|
274 |
+
def lora_calc_updown(lora, module, target):
|
275 |
+
with torch.no_grad():
|
276 |
+
up = module.up.weight.to(target.device, dtype=target.dtype)
|
277 |
+
down = module.down.weight.to(target.device, dtype=target.dtype)
|
278 |
+
|
279 |
+
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
|
280 |
+
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
281 |
+
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
|
282 |
+
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
|
283 |
+
else:
|
284 |
+
updown = up @ down
|
285 |
+
|
286 |
+
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
287 |
+
|
288 |
+
return updown
|
289 |
+
|
290 |
+
|
291 |
+
def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
|
292 |
+
weights_backup = getattr(self, "lora_weights_backup", None)
|
293 |
+
|
294 |
+
if weights_backup is None:
|
295 |
+
return
|
296 |
+
|
297 |
+
if isinstance(self, torch.nn.MultiheadAttention):
|
298 |
+
self.in_proj_weight.copy_(weights_backup[0])
|
299 |
+
self.out_proj.weight.copy_(weights_backup[1])
|
300 |
+
else:
|
301 |
+
self.weight.copy_(weights_backup)
|
302 |
+
|
303 |
+
|
304 |
+
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
|
305 |
+
"""
|
306 |
+
Applies the currently selected set of Loras to the weights of torch layer self.
|
307 |
+
If weights already have this particular set of loras applied, does nothing.
|
308 |
+
If not, restores orginal weights from backup and alters weights according to loras.
|
309 |
+
"""
|
310 |
+
|
311 |
+
lora_layer_name = getattr(self, 'lora_layer_name', None)
|
312 |
+
if lora_layer_name is None:
|
313 |
+
return
|
314 |
+
|
315 |
+
current_names = getattr(self, "lora_current_names", ())
|
316 |
+
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
|
317 |
+
|
318 |
+
weights_backup = getattr(self, "lora_weights_backup", None)
|
319 |
+
if weights_backup is None:
|
320 |
+
if isinstance(self, torch.nn.MultiheadAttention):
|
321 |
+
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
|
322 |
+
else:
|
323 |
+
weights_backup = self.weight.to(devices.cpu, copy=True)
|
324 |
+
|
325 |
+
self.lora_weights_backup = weights_backup
|
326 |
+
|
327 |
+
if current_names != wanted_names:
|
328 |
+
lora_restore_weights_from_backup(self)
|
329 |
+
|
330 |
+
for lora in loaded_loras:
|
331 |
+
module = lora.modules.get(lora_layer_name, None)
|
332 |
+
if module is not None and hasattr(self, 'weight'):
|
333 |
+
self.weight += lora_calc_updown(lora, module, self.weight)
|
334 |
+
continue
|
335 |
+
|
336 |
+
module_q = lora.modules.get(lora_layer_name + "_q_proj", None)
|
337 |
+
module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
|
338 |
+
module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
|
339 |
+
module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
|
340 |
+
|
341 |
+
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
342 |
+
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
|
343 |
+
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
|
344 |
+
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
|
345 |
+
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
346 |
+
|
347 |
+
self.in_proj_weight += updown_qkv
|
348 |
+
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
|
349 |
+
continue
|
350 |
+
|
351 |
+
if module is None:
|
352 |
+
continue
|
353 |
+
|
354 |
+
print(f'failed to calculate lora weights for layer {lora_layer_name}')
|
355 |
+
|
356 |
+
self.lora_current_names = wanted_names
|
357 |
+
|
358 |
+
|
359 |
+
def lora_forward(module, input, original_forward):
|
360 |
+
"""
|
361 |
+
Old way of applying Lora by executing operations during layer's forward.
|
362 |
+
Stacking many loras this way results in big performance degradation.
|
363 |
+
"""
|
364 |
+
|
365 |
+
if len(loaded_loras) == 0:
|
366 |
+
return original_forward(module, input)
|
367 |
+
|
368 |
+
input = devices.cond_cast_unet(input)
|
369 |
+
|
370 |
+
lora_restore_weights_from_backup(module)
|
371 |
+
lora_reset_cached_weight(module)
|
372 |
+
|
373 |
+
res = original_forward(module, input)
|
374 |
+
|
375 |
+
lora_layer_name = getattr(module, 'lora_layer_name', None)
|
376 |
+
for lora in loaded_loras:
|
377 |
+
module = lora.modules.get(lora_layer_name, None)
|
378 |
+
if module is None:
|
379 |
+
continue
|
380 |
+
|
381 |
+
module.up.to(device=devices.device)
|
382 |
+
module.down.to(device=devices.device)
|
383 |
+
|
384 |
+
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
385 |
+
|
386 |
+
return res
|
387 |
+
|
388 |
+
|
389 |
+
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
|
390 |
+
self.lora_current_names = ()
|
391 |
+
self.lora_weights_backup = None
|
392 |
+
|
393 |
+
|
394 |
+
def lora_Linear_forward(self, input):
|
395 |
+
if shared.opts.lora_functional:
|
396 |
+
return lora_forward(self, input, torch.nn.Linear_forward_before_lora)
|
397 |
+
|
398 |
+
lora_apply_weights(self)
|
399 |
+
|
400 |
+
return torch.nn.Linear_forward_before_lora(self, input)
|
401 |
+
|
402 |
+
|
403 |
+
def lora_Linear_load_state_dict(self, *args, **kwargs):
|
404 |
+
lora_reset_cached_weight(self)
|
405 |
+
|
406 |
+
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
|
407 |
+
|
408 |
+
|
409 |
+
def lora_Conv2d_forward(self, input):
|
410 |
+
if shared.opts.lora_functional:
|
411 |
+
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora)
|
412 |
+
|
413 |
+
lora_apply_weights(self)
|
414 |
+
|
415 |
+
return torch.nn.Conv2d_forward_before_lora(self, input)
|
416 |
+
|
417 |
+
|
418 |
+
def lora_Conv2d_load_state_dict(self, *args, **kwargs):
|
419 |
+
lora_reset_cached_weight(self)
|
420 |
+
|
421 |
+
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
|
422 |
+
|
423 |
+
|
424 |
+
def lora_MultiheadAttention_forward(self, *args, **kwargs):
|
425 |
+
lora_apply_weights(self)
|
426 |
+
|
427 |
+
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
|
428 |
+
|
429 |
+
|
430 |
+
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
|
431 |
+
lora_reset_cached_weight(self)
|
432 |
+
|
433 |
+
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
|
434 |
+
|
435 |
+
|
436 |
+
def list_available_loras():
|
437 |
+
available_loras.clear()
|
438 |
+
available_lora_aliases.clear()
|
439 |
+
forbidden_lora_aliases.clear()
|
440 |
+
available_lora_hash_lookup.clear()
|
441 |
+
forbidden_lora_aliases.update({"none": 1, "Addams": 1})
|
442 |
+
|
443 |
+
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
444 |
+
|
445 |
+
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
446 |
+
for filename in sorted(candidates, key=str.lower):
|
447 |
+
if os.path.isdir(filename):
|
448 |
+
continue
|
449 |
+
|
450 |
+
name = os.path.splitext(os.path.basename(filename))[0]
|
451 |
+
try:
|
452 |
+
entry = LoraOnDisk(name, filename)
|
453 |
+
except OSError: # should catch FileNotFoundError and PermissionError etc.
|
454 |
+
errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True)
|
455 |
+
continue
|
456 |
+
|
457 |
+
available_loras[name] = entry
|
458 |
+
|
459 |
+
if entry.alias in available_lora_aliases:
|
460 |
+
forbidden_lora_aliases[entry.alias.lower()] = 1
|
461 |
+
|
462 |
+
available_lora_aliases[name] = entry
|
463 |
+
available_lora_aliases[entry.alias] = entry
|
464 |
+
|
465 |
+
|
466 |
+
re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
|
467 |
+
|
468 |
+
|
469 |
+
def infotext_pasted(infotext, params):
|
470 |
+
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
|
471 |
+
return # if the other extension is active, it will handle those fields, no need to do anything
|
472 |
+
|
473 |
+
added = []
|
474 |
+
|
475 |
+
for k in params:
|
476 |
+
if not k.startswith("AddNet Model "):
|
477 |
+
continue
|
478 |
+
|
479 |
+
num = k[13:]
|
480 |
+
|
481 |
+
if params.get("AddNet Module " + num) != "LoRA":
|
482 |
+
continue
|
483 |
+
|
484 |
+
name = params.get("AddNet Model " + num)
|
485 |
+
if name is None:
|
486 |
+
continue
|
487 |
+
|
488 |
+
m = re_lora_name.match(name)
|
489 |
+
if m:
|
490 |
+
name = m.group(1)
|
491 |
+
|
492 |
+
multiplier = params.get("AddNet Weight A " + num, "1.0")
|
493 |
+
|
494 |
+
added.append(f"<lora:{name}:{multiplier}>")
|
495 |
+
|
496 |
+
if added:
|
497 |
+
params["Prompt"] += "\n" + "".join(added)
|
498 |
+
|
499 |
+
|
500 |
+
available_loras = {}
|
501 |
+
available_lora_aliases = {}
|
502 |
+
available_lora_hash_lookup = {}
|
503 |
+
forbidden_lora_aliases = {}
|
504 |
+
loaded_loras = []
|
505 |
+
|
506 |
+
list_available_loras()
|
extensions-builtin/Lora/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
|
extensions-builtin/Lora/scripts/lora_script.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
from fastapi import FastAPI
|
6 |
+
|
7 |
+
import lora
|
8 |
+
import extra_networks_lora
|
9 |
+
import ui_extra_networks_lora
|
10 |
+
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
|
11 |
+
|
12 |
+
def unload():
|
13 |
+
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
|
14 |
+
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
|
15 |
+
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
|
16 |
+
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
|
17 |
+
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
|
18 |
+
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
|
19 |
+
|
20 |
+
|
21 |
+
def before_ui():
|
22 |
+
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
|
23 |
+
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
|
24 |
+
|
25 |
+
|
26 |
+
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
|
27 |
+
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
|
28 |
+
|
29 |
+
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
|
30 |
+
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
|
31 |
+
|
32 |
+
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
|
33 |
+
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
|
34 |
+
|
35 |
+
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
|
36 |
+
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
|
37 |
+
|
38 |
+
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
|
39 |
+
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
|
40 |
+
|
41 |
+
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
|
42 |
+
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
|
43 |
+
|
44 |
+
torch.nn.Linear.forward = lora.lora_Linear_forward
|
45 |
+
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
|
46 |
+
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
|
47 |
+
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
|
48 |
+
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
|
49 |
+
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
|
50 |
+
|
51 |
+
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
|
52 |
+
script_callbacks.on_script_unloaded(unload)
|
53 |
+
script_callbacks.on_before_ui(before_ui)
|
54 |
+
script_callbacks.on_infotext_pasted(lora.infotext_pasted)
|
55 |
+
|
56 |
+
|
57 |
+
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
|
58 |
+
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras),
|
59 |
+
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
|
60 |
+
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
|
61 |
+
}))
|
62 |
+
|
63 |
+
|
64 |
+
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
|
65 |
+
"lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
|
66 |
+
}))
|
67 |
+
|
68 |
+
|
69 |
+
def create_lora_json(obj: lora.LoraOnDisk):
|
70 |
+
return {
|
71 |
+
"name": obj.name,
|
72 |
+
"alias": obj.alias,
|
73 |
+
"path": obj.filename,
|
74 |
+
"metadata": obj.metadata,
|
75 |
+
}
|
76 |
+
|
77 |
+
|
78 |
+
def api_loras(_: gr.Blocks, app: FastAPI):
|
79 |
+
@app.get("/sdapi/v1/loras")
|
80 |
+
async def get_loras():
|
81 |
+
return [create_lora_json(obj) for obj in lora.available_loras.values()]
|
82 |
+
|
83 |
+
@app.post("/sdapi/v1/refresh-loras")
|
84 |
+
async def refresh_loras():
|
85 |
+
return lora.list_available_loras()
|
86 |
+
|
87 |
+
|
88 |
+
script_callbacks.on_app_started(api_loras)
|
89 |
+
|
90 |
+
re_lora = re.compile("<lora:([^:]+):")
|
91 |
+
|
92 |
+
|
93 |
+
def infotext_pasted(infotext, d):
|
94 |
+
hashes = d.get("Lora hashes")
|
95 |
+
if not hashes:
|
96 |
+
return
|
97 |
+
|
98 |
+
hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
|
99 |
+
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
|
100 |
+
|
101 |
+
def lora_replacement(m):
|
102 |
+
alias = m.group(1)
|
103 |
+
shorthash = hashes.get(alias)
|
104 |
+
if shorthash is None:
|
105 |
+
return m.group(0)
|
106 |
+
|
107 |
+
lora_on_disk = lora.available_lora_hash_lookup.get(shorthash)
|
108 |
+
if lora_on_disk is None:
|
109 |
+
return m.group(0)
|
110 |
+
|
111 |
+
return f'<lora:{lora_on_disk.get_alias()}:'
|
112 |
+
|
113 |
+
d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"])
|
114 |
+
|
115 |
+
|
116 |
+
script_callbacks.on_infotext_pasted(infotext_pasted)
|
extensions-builtin/Lora/ui_extra_networks_lora.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import lora
|
4 |
+
|
5 |
+
from modules import shared, ui_extra_networks
|
6 |
+
|
7 |
+
|
8 |
+
class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
9 |
+
def __init__(self):
|
10 |
+
super().__init__('Lora')
|
11 |
+
|
12 |
+
def refresh(self):
|
13 |
+
lora.list_available_loras()
|
14 |
+
|
15 |
+
def list_items(self):
|
16 |
+
for index, (name, lora_on_disk) in enumerate(lora.available_loras.items()):
|
17 |
+
path, ext = os.path.splitext(lora_on_disk.filename)
|
18 |
+
|
19 |
+
alias = lora_on_disk.get_alias()
|
20 |
+
|
21 |
+
yield {
|
22 |
+
"name": name,
|
23 |
+
"filename": path,
|
24 |
+
"preview": self.find_preview(path) if self.find_preview(path) else './file=html/card-no-preview.png',
|
25 |
+
"description": self.find_description(path),
|
26 |
+
"search_term": self.search_terms_from_path(lora_on_disk.filename),
|
27 |
+
"prompt": json.dumps(f"<lora:{alias}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
|
28 |
+
"local_preview": f"{path}.{shared.opts.samples_format}",
|
29 |
+
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
|
30 |
+
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},
|
31 |
+
|
32 |
+
}
|
33 |
+
|
34 |
+
def allowed_directories_for_previews(self):
|
35 |
+
return [shared.cmd_opts.lora_dir]
|
36 |
+
|
extensions-builtin/ScuNET/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))
|
extensions-builtin/ScuNET/scripts/scunet_model.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import PIL.Image
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from basicsr.utils.download_util import load_file_from_url
|
10 |
+
|
11 |
+
import modules.upscaler
|
12 |
+
from modules import devices, modelloader, script_callbacks, errors
|
13 |
+
from scunet_model_arch import SCUNet as net
|
14 |
+
|
15 |
+
from modules.shared import opts
|
16 |
+
|
17 |
+
|
18 |
+
class UpscalerScuNET(modules.upscaler.Upscaler):
|
19 |
+
def __init__(self, dirname):
|
20 |
+
self.name = "ScuNET"
|
21 |
+
self.model_name = "ScuNET GAN"
|
22 |
+
self.model_name2 = "ScuNET PSNR"
|
23 |
+
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
|
24 |
+
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
|
25 |
+
self.user_path = dirname
|
26 |
+
super().__init__()
|
27 |
+
model_paths = self.find_models(ext_filter=[".pth"])
|
28 |
+
scalers = []
|
29 |
+
add_model2 = True
|
30 |
+
for file in model_paths:
|
31 |
+
if "http" in file:
|
32 |
+
name = self.model_name
|
33 |
+
else:
|
34 |
+
name = modelloader.friendly_name(file)
|
35 |
+
if name == self.model_name2 or file == self.model_url2:
|
36 |
+
add_model2 = False
|
37 |
+
try:
|
38 |
+
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
|
39 |
+
scalers.append(scaler_data)
|
40 |
+
except Exception:
|
41 |
+
errors.report(f"Error loading ScuNET model: {file}", exc_info=True)
|
42 |
+
if add_model2:
|
43 |
+
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
|
44 |
+
scalers.append(scaler_data2)
|
45 |
+
self.scalers = scalers
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
@torch.no_grad()
|
49 |
+
def tiled_inference(img, model):
|
50 |
+
# test the image tile by tile
|
51 |
+
h, w = img.shape[2:]
|
52 |
+
tile = opts.SCUNET_tile
|
53 |
+
tile_overlap = opts.SCUNET_tile_overlap
|
54 |
+
if tile == 0:
|
55 |
+
return model(img)
|
56 |
+
|
57 |
+
device = devices.get_device_for('scunet')
|
58 |
+
assert tile % 8 == 0, "tile size should be a multiple of window_size"
|
59 |
+
sf = 1
|
60 |
+
|
61 |
+
stride = tile - tile_overlap
|
62 |
+
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
63 |
+
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
64 |
+
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
|
65 |
+
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
|
66 |
+
|
67 |
+
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
|
68 |
+
for h_idx in h_idx_list:
|
69 |
+
|
70 |
+
for w_idx in w_idx_list:
|
71 |
+
|
72 |
+
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
73 |
+
|
74 |
+
out_patch = model(in_patch)
|
75 |
+
out_patch_mask = torch.ones_like(out_patch)
|
76 |
+
|
77 |
+
E[
|
78 |
+
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
79 |
+
].add_(out_patch)
|
80 |
+
W[
|
81 |
+
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
82 |
+
].add_(out_patch_mask)
|
83 |
+
pbar.update(1)
|
84 |
+
output = E.div_(W)
|
85 |
+
|
86 |
+
return output
|
87 |
+
|
88 |
+
def do_upscale(self, img: PIL.Image.Image, selected_file):
|
89 |
+
|
90 |
+
torch.cuda.empty_cache()
|
91 |
+
|
92 |
+
model = self.load_model(selected_file)
|
93 |
+
if model is None:
|
94 |
+
print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
|
95 |
+
return img
|
96 |
+
|
97 |
+
device = devices.get_device_for('scunet')
|
98 |
+
tile = opts.SCUNET_tile
|
99 |
+
h, w = img.height, img.width
|
100 |
+
np_img = np.array(img)
|
101 |
+
np_img = np_img[:, :, ::-1] # RGB to BGR
|
102 |
+
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
|
103 |
+
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
|
104 |
+
|
105 |
+
if tile > h or tile > w:
|
106 |
+
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
|
107 |
+
_img[:, :, :h, :w] = torch_img # pad image
|
108 |
+
torch_img = _img
|
109 |
+
|
110 |
+
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
|
111 |
+
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
|
112 |
+
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
|
113 |
+
del torch_img, torch_output
|
114 |
+
torch.cuda.empty_cache()
|
115 |
+
|
116 |
+
output = np_output.transpose((1, 2, 0)) # CHW to HWC
|
117 |
+
output = output[:, :, ::-1] # BGR to RGB
|
118 |
+
return PIL.Image.fromarray((output * 255).astype(np.uint8))
|
119 |
+
|
120 |
+
def load_model(self, path: str):
|
121 |
+
device = devices.get_device_for('scunet')
|
122 |
+
if "http" in path:
|
123 |
+
filename = load_file_from_url(url=self.model_url, model_dir=self.model_download_path, file_name="%s.pth" % self.name, progress=True)
|
124 |
+
else:
|
125 |
+
filename = path
|
126 |
+
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
|
127 |
+
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
|
128 |
+
return None
|
129 |
+
|
130 |
+
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
|
131 |
+
model.load_state_dict(torch.load(filename), strict=True)
|
132 |
+
model.eval()
|
133 |
+
for _, v in model.named_parameters():
|
134 |
+
v.requires_grad = False
|
135 |
+
model = model.to(device)
|
136 |
+
|
137 |
+
return model
|
138 |
+
|
139 |
+
|
140 |
+
def on_ui_settings():
|
141 |
+
import gradio as gr
|
142 |
+
from modules import shared
|
143 |
+
|
144 |
+
shared.opts.add_option("SCUNET_tile", shared.OptionInfo(256, "Tile size for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")).info("0 = no tiling"))
|
145 |
+
shared.opts.add_option("SCUNET_tile_overlap", shared.OptionInfo(8, "Tile overlap for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=('upscaling', "Upscaling")).info("Low values = visible seam"))
|
146 |
+
|
147 |
+
|
148 |
+
script_callbacks.on_ui_settings(on_ui_settings)
|
extensions-builtin/ScuNET/scunet_model_arch.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from einops import rearrange
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
from timm.models.layers import trunc_normal_, DropPath
|
8 |
+
|
9 |
+
|
10 |
+
class WMSA(nn.Module):
|
11 |
+
""" Self-attention module in Swin Transformer
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
|
15 |
+
super(WMSA, self).__init__()
|
16 |
+
self.input_dim = input_dim
|
17 |
+
self.output_dim = output_dim
|
18 |
+
self.head_dim = head_dim
|
19 |
+
self.scale = self.head_dim ** -0.5
|
20 |
+
self.n_heads = input_dim // head_dim
|
21 |
+
self.window_size = window_size
|
22 |
+
self.type = type
|
23 |
+
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
|
24 |
+
|
25 |
+
self.relative_position_params = nn.Parameter(
|
26 |
+
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
|
27 |
+
|
28 |
+
self.linear = nn.Linear(self.input_dim, self.output_dim)
|
29 |
+
|
30 |
+
trunc_normal_(self.relative_position_params, std=.02)
|
31 |
+
self.relative_position_params = torch.nn.Parameter(
|
32 |
+
self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
|
33 |
+
2).transpose(
|
34 |
+
0, 1))
|
35 |
+
|
36 |
+
def generate_mask(self, h, w, p, shift):
|
37 |
+
""" generating the mask of SW-MSA
|
38 |
+
Args:
|
39 |
+
shift: shift parameters in CyclicShift.
|
40 |
+
Returns:
|
41 |
+
attn_mask: should be (1 1 w p p),
|
42 |
+
"""
|
43 |
+
# supporting square.
|
44 |
+
attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
|
45 |
+
if self.type == 'W':
|
46 |
+
return attn_mask
|
47 |
+
|
48 |
+
s = p - shift
|
49 |
+
attn_mask[-1, :, :s, :, s:, :] = True
|
50 |
+
attn_mask[-1, :, s:, :, :s, :] = True
|
51 |
+
attn_mask[:, -1, :, :s, :, s:] = True
|
52 |
+
attn_mask[:, -1, :, s:, :, :s] = True
|
53 |
+
attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
|
54 |
+
return attn_mask
|
55 |
+
|
56 |
+
def forward(self, x):
|
57 |
+
""" Forward pass of Window Multi-head Self-attention module.
|
58 |
+
Args:
|
59 |
+
x: input tensor with shape of [b h w c];
|
60 |
+
attn_mask: attention mask, fill -inf where the value is True;
|
61 |
+
Returns:
|
62 |
+
output: tensor shape [b h w c]
|
63 |
+
"""
|
64 |
+
if self.type != 'W':
|
65 |
+
x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
|
66 |
+
|
67 |
+
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
|
68 |
+
h_windows = x.size(1)
|
69 |
+
w_windows = x.size(2)
|
70 |
+
# square validation
|
71 |
+
# assert h_windows == w_windows
|
72 |
+
|
73 |
+
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
|
74 |
+
qkv = self.embedding_layer(x)
|
75 |
+
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
|
76 |
+
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
|
77 |
+
# Adding learnable relative embedding
|
78 |
+
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
|
79 |
+
# Using Attn Mask to distinguish different subwindows.
|
80 |
+
if self.type != 'W':
|
81 |
+
attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
|
82 |
+
sim = sim.masked_fill_(attn_mask, float("-inf"))
|
83 |
+
|
84 |
+
probs = nn.functional.softmax(sim, dim=-1)
|
85 |
+
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
|
86 |
+
output = rearrange(output, 'h b w p c -> b w p (h c)')
|
87 |
+
output = self.linear(output)
|
88 |
+
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
|
89 |
+
|
90 |
+
if self.type != 'W':
|
91 |
+
output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), dims=(1, 2))
|
92 |
+
|
93 |
+
return output
|
94 |
+
|
95 |
+
def relative_embedding(self):
|
96 |
+
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
|
97 |
+
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
|
98 |
+
# negative is allowed
|
99 |
+
return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
|
100 |
+
|
101 |
+
|
102 |
+
class Block(nn.Module):
|
103 |
+
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
104 |
+
""" SwinTransformer Block
|
105 |
+
"""
|
106 |
+
super(Block, self).__init__()
|
107 |
+
self.input_dim = input_dim
|
108 |
+
self.output_dim = output_dim
|
109 |
+
assert type in ['W', 'SW']
|
110 |
+
self.type = type
|
111 |
+
if input_resolution <= window_size:
|
112 |
+
self.type = 'W'
|
113 |
+
|
114 |
+
self.ln1 = nn.LayerNorm(input_dim)
|
115 |
+
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
|
116 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
117 |
+
self.ln2 = nn.LayerNorm(input_dim)
|
118 |
+
self.mlp = nn.Sequential(
|
119 |
+
nn.Linear(input_dim, 4 * input_dim),
|
120 |
+
nn.GELU(),
|
121 |
+
nn.Linear(4 * input_dim, output_dim),
|
122 |
+
)
|
123 |
+
|
124 |
+
def forward(self, x):
|
125 |
+
x = x + self.drop_path(self.msa(self.ln1(x)))
|
126 |
+
x = x + self.drop_path(self.mlp(self.ln2(x)))
|
127 |
+
return x
|
128 |
+
|
129 |
+
|
130 |
+
class ConvTransBlock(nn.Module):
|
131 |
+
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
|
132 |
+
""" SwinTransformer and Conv Block
|
133 |
+
"""
|
134 |
+
super(ConvTransBlock, self).__init__()
|
135 |
+
self.conv_dim = conv_dim
|
136 |
+
self.trans_dim = trans_dim
|
137 |
+
self.head_dim = head_dim
|
138 |
+
self.window_size = window_size
|
139 |
+
self.drop_path = drop_path
|
140 |
+
self.type = type
|
141 |
+
self.input_resolution = input_resolution
|
142 |
+
|
143 |
+
assert self.type in ['W', 'SW']
|
144 |
+
if self.input_resolution <= self.window_size:
|
145 |
+
self.type = 'W'
|
146 |
+
|
147 |
+
self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
|
148 |
+
self.type, self.input_resolution)
|
149 |
+
self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
150 |
+
self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
|
151 |
+
|
152 |
+
self.conv_block = nn.Sequential(
|
153 |
+
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
|
154 |
+
nn.ReLU(True),
|
155 |
+
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
|
156 |
+
)
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
|
160 |
+
conv_x = self.conv_block(conv_x) + conv_x
|
161 |
+
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
|
162 |
+
trans_x = self.trans_block(trans_x)
|
163 |
+
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
|
164 |
+
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
|
165 |
+
x = x + res
|
166 |
+
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
class SCUNet(nn.Module):
|
171 |
+
# def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
|
172 |
+
def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
|
173 |
+
super(SCUNet, self).__init__()
|
174 |
+
if config is None:
|
175 |
+
config = [2, 2, 2, 2, 2, 2, 2]
|
176 |
+
self.config = config
|
177 |
+
self.dim = dim
|
178 |
+
self.head_dim = 32
|
179 |
+
self.window_size = 8
|
180 |
+
|
181 |
+
# drop path rate for each layer
|
182 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
|
183 |
+
|
184 |
+
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
|
185 |
+
|
186 |
+
begin = 0
|
187 |
+
self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
188 |
+
'W' if not i % 2 else 'SW', input_resolution)
|
189 |
+
for i in range(config[0])] + \
|
190 |
+
[nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
|
191 |
+
|
192 |
+
begin += config[0]
|
193 |
+
self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
194 |
+
'W' if not i % 2 else 'SW', input_resolution // 2)
|
195 |
+
for i in range(config[1])] + \
|
196 |
+
[nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
|
197 |
+
|
198 |
+
begin += config[1]
|
199 |
+
self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
200 |
+
'W' if not i % 2 else 'SW', input_resolution // 4)
|
201 |
+
for i in range(config[2])] + \
|
202 |
+
[nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
|
203 |
+
|
204 |
+
begin += config[2]
|
205 |
+
self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
206 |
+
'W' if not i % 2 else 'SW', input_resolution // 8)
|
207 |
+
for i in range(config[3])]
|
208 |
+
|
209 |
+
begin += config[3]
|
210 |
+
self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
|
211 |
+
[ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
|
212 |
+
'W' if not i % 2 else 'SW', input_resolution // 4)
|
213 |
+
for i in range(config[4])]
|
214 |
+
|
215 |
+
begin += config[4]
|
216 |
+
self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
|
217 |
+
[ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
|
218 |
+
'W' if not i % 2 else 'SW', input_resolution // 2)
|
219 |
+
for i in range(config[5])]
|
220 |
+
|
221 |
+
begin += config[5]
|
222 |
+
self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
|
223 |
+
[ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
|
224 |
+
'W' if not i % 2 else 'SW', input_resolution)
|
225 |
+
for i in range(config[6])]
|
226 |
+
|
227 |
+
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
|
228 |
+
|
229 |
+
self.m_head = nn.Sequential(*self.m_head)
|
230 |
+
self.m_down1 = nn.Sequential(*self.m_down1)
|
231 |
+
self.m_down2 = nn.Sequential(*self.m_down2)
|
232 |
+
self.m_down3 = nn.Sequential(*self.m_down3)
|
233 |
+
self.m_body = nn.Sequential(*self.m_body)
|
234 |
+
self.m_up3 = nn.Sequential(*self.m_up3)
|
235 |
+
self.m_up2 = nn.Sequential(*self.m_up2)
|
236 |
+
self.m_up1 = nn.Sequential(*self.m_up1)
|
237 |
+
self.m_tail = nn.Sequential(*self.m_tail)
|
238 |
+
# self.apply(self._init_weights)
|
239 |
+
|
240 |
+
def forward(self, x0):
|
241 |
+
|
242 |
+
h, w = x0.size()[-2:]
|
243 |
+
paddingBottom = int(np.ceil(h / 64) * 64 - h)
|
244 |
+
paddingRight = int(np.ceil(w / 64) * 64 - w)
|
245 |
+
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
|
246 |
+
|
247 |
+
x1 = self.m_head(x0)
|
248 |
+
x2 = self.m_down1(x1)
|
249 |
+
x3 = self.m_down2(x2)
|
250 |
+
x4 = self.m_down3(x3)
|
251 |
+
x = self.m_body(x4)
|
252 |
+
x = self.m_up3(x + x4)
|
253 |
+
x = self.m_up2(x + x3)
|
254 |
+
x = self.m_up1(x + x2)
|
255 |
+
x = self.m_tail(x + x1)
|
256 |
+
|
257 |
+
x = x[..., :h, :w]
|
258 |
+
|
259 |
+
return x
|
260 |
+
|
261 |
+
def _init_weights(self, m):
|
262 |
+
if isinstance(m, nn.Linear):
|
263 |
+
trunc_normal_(m.weight, std=.02)
|
264 |
+
if m.bias is not None:
|
265 |
+
nn.init.constant_(m.bias, 0)
|
266 |
+
elif isinstance(m, nn.LayerNorm):
|
267 |
+
nn.init.constant_(m.bias, 0)
|
268 |
+
nn.init.constant_(m.weight, 1.0)
|
extensions-builtin/SwinIR/preload.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from modules import paths
|
3 |
+
|
4 |
+
|
5 |
+
def preload(parser):
|
6 |
+
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))
|
extensions-builtin/SwinIR/scripts/swinir_model.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from basicsr.utils.download_util import load_file_from_url
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
from modules import modelloader, devices, script_callbacks, shared
|
10 |
+
from modules.shared import opts, state
|
11 |
+
from swinir_model_arch import SwinIR as net
|
12 |
+
from swinir_model_arch_v2 import Swin2SR as net2
|
13 |
+
from modules.upscaler import Upscaler, UpscalerData
|
14 |
+
|
15 |
+
|
16 |
+
device_swinir = devices.get_device_for('swinir')
|
17 |
+
|
18 |
+
|
19 |
+
class UpscalerSwinIR(Upscaler):
|
20 |
+
def __init__(self, dirname):
|
21 |
+
self.name = "SwinIR"
|
22 |
+
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
|
23 |
+
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
24 |
+
"-L_x4_GAN.pth "
|
25 |
+
self.model_name = "SwinIR 4x"
|
26 |
+
self.user_path = dirname
|
27 |
+
super().__init__()
|
28 |
+
scalers = []
|
29 |
+
model_files = self.find_models(ext_filter=[".pt", ".pth"])
|
30 |
+
for model in model_files:
|
31 |
+
if "http" in model:
|
32 |
+
name = self.model_name
|
33 |
+
else:
|
34 |
+
name = modelloader.friendly_name(model)
|
35 |
+
model_data = UpscalerData(name, model, self)
|
36 |
+
scalers.append(model_data)
|
37 |
+
self.scalers = scalers
|
38 |
+
|
39 |
+
def do_upscale(self, img, model_file):
|
40 |
+
model = self.load_model(model_file)
|
41 |
+
if model is None:
|
42 |
+
return img
|
43 |
+
model = model.to(device_swinir, dtype=devices.dtype)
|
44 |
+
img = upscale(img, model)
|
45 |
+
try:
|
46 |
+
torch.cuda.empty_cache()
|
47 |
+
except Exception:
|
48 |
+
pass
|
49 |
+
return img
|
50 |
+
|
51 |
+
def load_model(self, path, scale=4):
|
52 |
+
if "http" in path:
|
53 |
+
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
|
54 |
+
filename = load_file_from_url(url=path, model_dir=self.model_download_path, file_name=dl_name, progress=True)
|
55 |
+
else:
|
56 |
+
filename = path
|
57 |
+
if filename is None or not os.path.exists(filename):
|
58 |
+
return None
|
59 |
+
if filename.endswith(".v2.pth"):
|
60 |
+
model = net2(
|
61 |
+
upscale=scale,
|
62 |
+
in_chans=3,
|
63 |
+
img_size=64,
|
64 |
+
window_size=8,
|
65 |
+
img_range=1.0,
|
66 |
+
depths=[6, 6, 6, 6, 6, 6],
|
67 |
+
embed_dim=180,
|
68 |
+
num_heads=[6, 6, 6, 6, 6, 6],
|
69 |
+
mlp_ratio=2,
|
70 |
+
upsampler="nearest+conv",
|
71 |
+
resi_connection="1conv",
|
72 |
+
)
|
73 |
+
params = None
|
74 |
+
else:
|
75 |
+
model = net(
|
76 |
+
upscale=scale,
|
77 |
+
in_chans=3,
|
78 |
+
img_size=64,
|
79 |
+
window_size=8,
|
80 |
+
img_range=1.0,
|
81 |
+
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
82 |
+
embed_dim=240,
|
83 |
+
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
84 |
+
mlp_ratio=2,
|
85 |
+
upsampler="nearest+conv",
|
86 |
+
resi_connection="3conv",
|
87 |
+
)
|
88 |
+
params = "params_ema"
|
89 |
+
|
90 |
+
pretrained_model = torch.load(filename)
|
91 |
+
if params is not None:
|
92 |
+
model.load_state_dict(pretrained_model[params], strict=True)
|
93 |
+
else:
|
94 |
+
model.load_state_dict(pretrained_model, strict=True)
|
95 |
+
return model
|
96 |
+
|
97 |
+
|
98 |
+
def upscale(
|
99 |
+
img,
|
100 |
+
model,
|
101 |
+
tile=None,
|
102 |
+
tile_overlap=None,
|
103 |
+
window_size=8,
|
104 |
+
scale=4,
|
105 |
+
):
|
106 |
+
tile = tile or opts.SWIN_tile
|
107 |
+
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
|
108 |
+
|
109 |
+
|
110 |
+
img = np.array(img)
|
111 |
+
img = img[:, :, ::-1]
|
112 |
+
img = np.moveaxis(img, 2, 0) / 255
|
113 |
+
img = torch.from_numpy(img).float()
|
114 |
+
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
|
115 |
+
with torch.no_grad(), devices.autocast():
|
116 |
+
_, _, h_old, w_old = img.size()
|
117 |
+
h_pad = (h_old // window_size + 1) * window_size - h_old
|
118 |
+
w_pad = (w_old // window_size + 1) * window_size - w_old
|
119 |
+
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
120 |
+
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
121 |
+
output = inference(img, model, tile, tile_overlap, window_size, scale)
|
122 |
+
output = output[..., : h_old * scale, : w_old * scale]
|
123 |
+
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
124 |
+
if output.ndim == 3:
|
125 |
+
output = np.transpose(
|
126 |
+
output[[2, 1, 0], :, :], (1, 2, 0)
|
127 |
+
) # CHW-RGB to HCW-BGR
|
128 |
+
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
129 |
+
return Image.fromarray(output, "RGB")
|
130 |
+
|
131 |
+
|
132 |
+
def inference(img, model, tile, tile_overlap, window_size, scale):
|
133 |
+
# test the image tile by tile
|
134 |
+
b, c, h, w = img.size()
|
135 |
+
tile = min(tile, h, w)
|
136 |
+
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
137 |
+
sf = scale
|
138 |
+
|
139 |
+
stride = tile - tile_overlap
|
140 |
+
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
141 |
+
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
142 |
+
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
|
143 |
+
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
|
144 |
+
|
145 |
+
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
146 |
+
for h_idx in h_idx_list:
|
147 |
+
if state.interrupted or state.skipped:
|
148 |
+
break
|
149 |
+
|
150 |
+
for w_idx in w_idx_list:
|
151 |
+
if state.interrupted or state.skipped:
|
152 |
+
break
|
153 |
+
|
154 |
+
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
155 |
+
out_patch = model(in_patch)
|
156 |
+
out_patch_mask = torch.ones_like(out_patch)
|
157 |
+
|
158 |
+
E[
|
159 |
+
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
160 |
+
].add_(out_patch)
|
161 |
+
W[
|
162 |
+
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
163 |
+
].add_(out_patch_mask)
|
164 |
+
pbar.update(1)
|
165 |
+
output = E.div_(W)
|
166 |
+
|
167 |
+
return output
|
168 |
+
|
169 |
+
|
170 |
+
def on_ui_settings():
|
171 |
+
import gradio as gr
|
172 |
+
|
173 |
+
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
|
174 |
+
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
|
175 |
+
|
176 |
+
|
177 |
+
script_callbacks.on_ui_settings(on_ui_settings)
|
extensions-builtin/SwinIR/swinir_model_arch.py
ADDED
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------------
|
2 |
+
# SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
|
3 |
+
# Originally Written by Ze Liu, Modified by Jingyun Liang.
|
4 |
+
# -----------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint as checkpoint
|
11 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
12 |
+
|
13 |
+
|
14 |
+
class Mlp(nn.Module):
|
15 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
16 |
+
super().__init__()
|
17 |
+
out_features = out_features or in_features
|
18 |
+
hidden_features = hidden_features or in_features
|
19 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
20 |
+
self.act = act_layer()
|
21 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
22 |
+
self.drop = nn.Dropout(drop)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
x = self.fc1(x)
|
26 |
+
x = self.act(x)
|
27 |
+
x = self.drop(x)
|
28 |
+
x = self.fc2(x)
|
29 |
+
x = self.drop(x)
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
def window_partition(x, window_size):
|
34 |
+
"""
|
35 |
+
Args:
|
36 |
+
x: (B, H, W, C)
|
37 |
+
window_size (int): window size
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
windows: (num_windows*B, window_size, window_size, C)
|
41 |
+
"""
|
42 |
+
B, H, W, C = x.shape
|
43 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
44 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
45 |
+
return windows
|
46 |
+
|
47 |
+
|
48 |
+
def window_reverse(windows, window_size, H, W):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
windows: (num_windows*B, window_size, window_size, C)
|
52 |
+
window_size (int): Window size
|
53 |
+
H (int): Height of image
|
54 |
+
W (int): Width of image
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
x: (B, H, W, C)
|
58 |
+
"""
|
59 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
60 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
61 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class WindowAttention(nn.Module):
|
66 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
67 |
+
It supports both of shifted and non-shifted window.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
dim (int): Number of input channels.
|
71 |
+
window_size (tuple[int]): The height and width of the window.
|
72 |
+
num_heads (int): Number of attention heads.
|
73 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
74 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
75 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
76 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
80 |
+
|
81 |
+
super().__init__()
|
82 |
+
self.dim = dim
|
83 |
+
self.window_size = window_size # Wh, Ww
|
84 |
+
self.num_heads = num_heads
|
85 |
+
head_dim = dim // num_heads
|
86 |
+
self.scale = qk_scale or head_dim ** -0.5
|
87 |
+
|
88 |
+
# define a parameter table of relative position bias
|
89 |
+
self.relative_position_bias_table = nn.Parameter(
|
90 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
91 |
+
|
92 |
+
# get pair-wise relative position index for each token inside the window
|
93 |
+
coords_h = torch.arange(self.window_size[0])
|
94 |
+
coords_w = torch.arange(self.window_size[1])
|
95 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
96 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
97 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
98 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
99 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
100 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
101 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
102 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
103 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
104 |
+
|
105 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
106 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
107 |
+
self.proj = nn.Linear(dim, dim)
|
108 |
+
|
109 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
110 |
+
|
111 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
112 |
+
self.softmax = nn.Softmax(dim=-1)
|
113 |
+
|
114 |
+
def forward(self, x, mask=None):
|
115 |
+
"""
|
116 |
+
Args:
|
117 |
+
x: input features with shape of (num_windows*B, N, C)
|
118 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
119 |
+
"""
|
120 |
+
B_, N, C = x.shape
|
121 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
122 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
123 |
+
|
124 |
+
q = q * self.scale
|
125 |
+
attn = (q @ k.transpose(-2, -1))
|
126 |
+
|
127 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
128 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
129 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
130 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
131 |
+
|
132 |
+
if mask is not None:
|
133 |
+
nW = mask.shape[0]
|
134 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
135 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
136 |
+
attn = self.softmax(attn)
|
137 |
+
else:
|
138 |
+
attn = self.softmax(attn)
|
139 |
+
|
140 |
+
attn = self.attn_drop(attn)
|
141 |
+
|
142 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
143 |
+
x = self.proj(x)
|
144 |
+
x = self.proj_drop(x)
|
145 |
+
return x
|
146 |
+
|
147 |
+
def extra_repr(self) -> str:
|
148 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
149 |
+
|
150 |
+
def flops(self, N):
|
151 |
+
# calculate flops for 1 window with token length of N
|
152 |
+
flops = 0
|
153 |
+
# qkv = self.qkv(x)
|
154 |
+
flops += N * self.dim * 3 * self.dim
|
155 |
+
# attn = (q @ k.transpose(-2, -1))
|
156 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
157 |
+
# x = (attn @ v)
|
158 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
159 |
+
# x = self.proj(x)
|
160 |
+
flops += N * self.dim * self.dim
|
161 |
+
return flops
|
162 |
+
|
163 |
+
|
164 |
+
class SwinTransformerBlock(nn.Module):
|
165 |
+
r""" Swin Transformer Block.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
dim (int): Number of input channels.
|
169 |
+
input_resolution (tuple[int]): Input resolution.
|
170 |
+
num_heads (int): Number of attention heads.
|
171 |
+
window_size (int): Window size.
|
172 |
+
shift_size (int): Shift size for SW-MSA.
|
173 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
174 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
175 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
176 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
177 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
178 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
179 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
180 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
184 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
185 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
186 |
+
super().__init__()
|
187 |
+
self.dim = dim
|
188 |
+
self.input_resolution = input_resolution
|
189 |
+
self.num_heads = num_heads
|
190 |
+
self.window_size = window_size
|
191 |
+
self.shift_size = shift_size
|
192 |
+
self.mlp_ratio = mlp_ratio
|
193 |
+
if min(self.input_resolution) <= self.window_size:
|
194 |
+
# if window size is larger than input resolution, we don't partition windows
|
195 |
+
self.shift_size = 0
|
196 |
+
self.window_size = min(self.input_resolution)
|
197 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
198 |
+
|
199 |
+
self.norm1 = norm_layer(dim)
|
200 |
+
self.attn = WindowAttention(
|
201 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
202 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
203 |
+
|
204 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
205 |
+
self.norm2 = norm_layer(dim)
|
206 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
207 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
208 |
+
|
209 |
+
if self.shift_size > 0:
|
210 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
211 |
+
else:
|
212 |
+
attn_mask = None
|
213 |
+
|
214 |
+
self.register_buffer("attn_mask", attn_mask)
|
215 |
+
|
216 |
+
def calculate_mask(self, x_size):
|
217 |
+
# calculate attention mask for SW-MSA
|
218 |
+
H, W = x_size
|
219 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
220 |
+
h_slices = (slice(0, -self.window_size),
|
221 |
+
slice(-self.window_size, -self.shift_size),
|
222 |
+
slice(-self.shift_size, None))
|
223 |
+
w_slices = (slice(0, -self.window_size),
|
224 |
+
slice(-self.window_size, -self.shift_size),
|
225 |
+
slice(-self.shift_size, None))
|
226 |
+
cnt = 0
|
227 |
+
for h in h_slices:
|
228 |
+
for w in w_slices:
|
229 |
+
img_mask[:, h, w, :] = cnt
|
230 |
+
cnt += 1
|
231 |
+
|
232 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
233 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
234 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
235 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
236 |
+
|
237 |
+
return attn_mask
|
238 |
+
|
239 |
+
def forward(self, x, x_size):
|
240 |
+
H, W = x_size
|
241 |
+
B, L, C = x.shape
|
242 |
+
# assert L == H * W, "input feature has wrong size"
|
243 |
+
|
244 |
+
shortcut = x
|
245 |
+
x = self.norm1(x)
|
246 |
+
x = x.view(B, H, W, C)
|
247 |
+
|
248 |
+
# cyclic shift
|
249 |
+
if self.shift_size > 0:
|
250 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
251 |
+
else:
|
252 |
+
shifted_x = x
|
253 |
+
|
254 |
+
# partition windows
|
255 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
256 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
257 |
+
|
258 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
259 |
+
if self.input_resolution == x_size:
|
260 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
261 |
+
else:
|
262 |
+
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
263 |
+
|
264 |
+
# merge windows
|
265 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
266 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
267 |
+
|
268 |
+
# reverse cyclic shift
|
269 |
+
if self.shift_size > 0:
|
270 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
271 |
+
else:
|
272 |
+
x = shifted_x
|
273 |
+
x = x.view(B, H * W, C)
|
274 |
+
|
275 |
+
# FFN
|
276 |
+
x = shortcut + self.drop_path(x)
|
277 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
278 |
+
|
279 |
+
return x
|
280 |
+
|
281 |
+
def extra_repr(self) -> str:
|
282 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
283 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
284 |
+
|
285 |
+
def flops(self):
|
286 |
+
flops = 0
|
287 |
+
H, W = self.input_resolution
|
288 |
+
# norm1
|
289 |
+
flops += self.dim * H * W
|
290 |
+
# W-MSA/SW-MSA
|
291 |
+
nW = H * W / self.window_size / self.window_size
|
292 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
293 |
+
# mlp
|
294 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
295 |
+
# norm2
|
296 |
+
flops += self.dim * H * W
|
297 |
+
return flops
|
298 |
+
|
299 |
+
|
300 |
+
class PatchMerging(nn.Module):
|
301 |
+
r""" Patch Merging Layer.
|
302 |
+
|
303 |
+
Args:
|
304 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
305 |
+
dim (int): Number of input channels.
|
306 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
310 |
+
super().__init__()
|
311 |
+
self.input_resolution = input_resolution
|
312 |
+
self.dim = dim
|
313 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
314 |
+
self.norm = norm_layer(4 * dim)
|
315 |
+
|
316 |
+
def forward(self, x):
|
317 |
+
"""
|
318 |
+
x: B, H*W, C
|
319 |
+
"""
|
320 |
+
H, W = self.input_resolution
|
321 |
+
B, L, C = x.shape
|
322 |
+
assert L == H * W, "input feature has wrong size"
|
323 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
324 |
+
|
325 |
+
x = x.view(B, H, W, C)
|
326 |
+
|
327 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
328 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
329 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
330 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
331 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
332 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
333 |
+
|
334 |
+
x = self.norm(x)
|
335 |
+
x = self.reduction(x)
|
336 |
+
|
337 |
+
return x
|
338 |
+
|
339 |
+
def extra_repr(self) -> str:
|
340 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
341 |
+
|
342 |
+
def flops(self):
|
343 |
+
H, W = self.input_resolution
|
344 |
+
flops = H * W * self.dim
|
345 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
346 |
+
return flops
|
347 |
+
|
348 |
+
|
349 |
+
class BasicLayer(nn.Module):
|
350 |
+
""" A basic Swin Transformer layer for one stage.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
dim (int): Number of input channels.
|
354 |
+
input_resolution (tuple[int]): Input resolution.
|
355 |
+
depth (int): Number of blocks.
|
356 |
+
num_heads (int): Number of attention heads.
|
357 |
+
window_size (int): Local window size.
|
358 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
359 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
360 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
361 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
362 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
363 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
364 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
365 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
366 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
367 |
+
"""
|
368 |
+
|
369 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
370 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
371 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
372 |
+
|
373 |
+
super().__init__()
|
374 |
+
self.dim = dim
|
375 |
+
self.input_resolution = input_resolution
|
376 |
+
self.depth = depth
|
377 |
+
self.use_checkpoint = use_checkpoint
|
378 |
+
|
379 |
+
# build blocks
|
380 |
+
self.blocks = nn.ModuleList([
|
381 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
382 |
+
num_heads=num_heads, window_size=window_size,
|
383 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
384 |
+
mlp_ratio=mlp_ratio,
|
385 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
386 |
+
drop=drop, attn_drop=attn_drop,
|
387 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
388 |
+
norm_layer=norm_layer)
|
389 |
+
for i in range(depth)])
|
390 |
+
|
391 |
+
# patch merging layer
|
392 |
+
if downsample is not None:
|
393 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
394 |
+
else:
|
395 |
+
self.downsample = None
|
396 |
+
|
397 |
+
def forward(self, x, x_size):
|
398 |
+
for blk in self.blocks:
|
399 |
+
if self.use_checkpoint:
|
400 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
401 |
+
else:
|
402 |
+
x = blk(x, x_size)
|
403 |
+
if self.downsample is not None:
|
404 |
+
x = self.downsample(x)
|
405 |
+
return x
|
406 |
+
|
407 |
+
def extra_repr(self) -> str:
|
408 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
409 |
+
|
410 |
+
def flops(self):
|
411 |
+
flops = 0
|
412 |
+
for blk in self.blocks:
|
413 |
+
flops += blk.flops()
|
414 |
+
if self.downsample is not None:
|
415 |
+
flops += self.downsample.flops()
|
416 |
+
return flops
|
417 |
+
|
418 |
+
|
419 |
+
class RSTB(nn.Module):
|
420 |
+
"""Residual Swin Transformer Block (RSTB).
|
421 |
+
|
422 |
+
Args:
|
423 |
+
dim (int): Number of input channels.
|
424 |
+
input_resolution (tuple[int]): Input resolution.
|
425 |
+
depth (int): Number of blocks.
|
426 |
+
num_heads (int): Number of attention heads.
|
427 |
+
window_size (int): Local window size.
|
428 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
429 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
430 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
431 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
432 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
433 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
434 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
435 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
436 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
437 |
+
img_size: Input image size.
|
438 |
+
patch_size: Patch size.
|
439 |
+
resi_connection: The convolutional block before residual connection.
|
440 |
+
"""
|
441 |
+
|
442 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
443 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
444 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
445 |
+
img_size=224, patch_size=4, resi_connection='1conv'):
|
446 |
+
super(RSTB, self).__init__()
|
447 |
+
|
448 |
+
self.dim = dim
|
449 |
+
self.input_resolution = input_resolution
|
450 |
+
|
451 |
+
self.residual_group = BasicLayer(dim=dim,
|
452 |
+
input_resolution=input_resolution,
|
453 |
+
depth=depth,
|
454 |
+
num_heads=num_heads,
|
455 |
+
window_size=window_size,
|
456 |
+
mlp_ratio=mlp_ratio,
|
457 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
458 |
+
drop=drop, attn_drop=attn_drop,
|
459 |
+
drop_path=drop_path,
|
460 |
+
norm_layer=norm_layer,
|
461 |
+
downsample=downsample,
|
462 |
+
use_checkpoint=use_checkpoint)
|
463 |
+
|
464 |
+
if resi_connection == '1conv':
|
465 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
466 |
+
elif resi_connection == '3conv':
|
467 |
+
# to save parameters and memory
|
468 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
469 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
470 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
471 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
472 |
+
|
473 |
+
self.patch_embed = PatchEmbed(
|
474 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
475 |
+
norm_layer=None)
|
476 |
+
|
477 |
+
self.patch_unembed = PatchUnEmbed(
|
478 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
|
479 |
+
norm_layer=None)
|
480 |
+
|
481 |
+
def forward(self, x, x_size):
|
482 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
483 |
+
|
484 |
+
def flops(self):
|
485 |
+
flops = 0
|
486 |
+
flops += self.residual_group.flops()
|
487 |
+
H, W = self.input_resolution
|
488 |
+
flops += H * W * self.dim * self.dim * 9
|
489 |
+
flops += self.patch_embed.flops()
|
490 |
+
flops += self.patch_unembed.flops()
|
491 |
+
|
492 |
+
return flops
|
493 |
+
|
494 |
+
|
495 |
+
class PatchEmbed(nn.Module):
|
496 |
+
r""" Image to Patch Embedding
|
497 |
+
|
498 |
+
Args:
|
499 |
+
img_size (int): Image size. Default: 224.
|
500 |
+
patch_size (int): Patch token size. Default: 4.
|
501 |
+
in_chans (int): Number of input image channels. Default: 3.
|
502 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
503 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
504 |
+
"""
|
505 |
+
|
506 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
507 |
+
super().__init__()
|
508 |
+
img_size = to_2tuple(img_size)
|
509 |
+
patch_size = to_2tuple(patch_size)
|
510 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
511 |
+
self.img_size = img_size
|
512 |
+
self.patch_size = patch_size
|
513 |
+
self.patches_resolution = patches_resolution
|
514 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
515 |
+
|
516 |
+
self.in_chans = in_chans
|
517 |
+
self.embed_dim = embed_dim
|
518 |
+
|
519 |
+
if norm_layer is not None:
|
520 |
+
self.norm = norm_layer(embed_dim)
|
521 |
+
else:
|
522 |
+
self.norm = None
|
523 |
+
|
524 |
+
def forward(self, x):
|
525 |
+
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
|
526 |
+
if self.norm is not None:
|
527 |
+
x = self.norm(x)
|
528 |
+
return x
|
529 |
+
|
530 |
+
def flops(self):
|
531 |
+
flops = 0
|
532 |
+
H, W = self.img_size
|
533 |
+
if self.norm is not None:
|
534 |
+
flops += H * W * self.embed_dim
|
535 |
+
return flops
|
536 |
+
|
537 |
+
|
538 |
+
class PatchUnEmbed(nn.Module):
|
539 |
+
r""" Image to Patch Unembedding
|
540 |
+
|
541 |
+
Args:
|
542 |
+
img_size (int): Image size. Default: 224.
|
543 |
+
patch_size (int): Patch token size. Default: 4.
|
544 |
+
in_chans (int): Number of input image channels. Default: 3.
|
545 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
546 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
547 |
+
"""
|
548 |
+
|
549 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
550 |
+
super().__init__()
|
551 |
+
img_size = to_2tuple(img_size)
|
552 |
+
patch_size = to_2tuple(patch_size)
|
553 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
554 |
+
self.img_size = img_size
|
555 |
+
self.patch_size = patch_size
|
556 |
+
self.patches_resolution = patches_resolution
|
557 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
558 |
+
|
559 |
+
self.in_chans = in_chans
|
560 |
+
self.embed_dim = embed_dim
|
561 |
+
|
562 |
+
def forward(self, x, x_size):
|
563 |
+
B, HW, C = x.shape
|
564 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
565 |
+
return x
|
566 |
+
|
567 |
+
def flops(self):
|
568 |
+
flops = 0
|
569 |
+
return flops
|
570 |
+
|
571 |
+
|
572 |
+
class Upsample(nn.Sequential):
|
573 |
+
"""Upsample module.
|
574 |
+
|
575 |
+
Args:
|
576 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
577 |
+
num_feat (int): Channel number of intermediate features.
|
578 |
+
"""
|
579 |
+
|
580 |
+
def __init__(self, scale, num_feat):
|
581 |
+
m = []
|
582 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
583 |
+
for _ in range(int(math.log(scale, 2))):
|
584 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
585 |
+
m.append(nn.PixelShuffle(2))
|
586 |
+
elif scale == 3:
|
587 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
588 |
+
m.append(nn.PixelShuffle(3))
|
589 |
+
else:
|
590 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
591 |
+
super(Upsample, self).__init__(*m)
|
592 |
+
|
593 |
+
|
594 |
+
class UpsampleOneStep(nn.Sequential):
|
595 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
596 |
+
Used in lightweight SR to save parameters.
|
597 |
+
|
598 |
+
Args:
|
599 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
600 |
+
num_feat (int): Channel number of intermediate features.
|
601 |
+
|
602 |
+
"""
|
603 |
+
|
604 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
605 |
+
self.num_feat = num_feat
|
606 |
+
self.input_resolution = input_resolution
|
607 |
+
m = []
|
608 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
609 |
+
m.append(nn.PixelShuffle(scale))
|
610 |
+
super(UpsampleOneStep, self).__init__(*m)
|
611 |
+
|
612 |
+
def flops(self):
|
613 |
+
H, W = self.input_resolution
|
614 |
+
flops = H * W * self.num_feat * 3 * 9
|
615 |
+
return flops
|
616 |
+
|
617 |
+
|
618 |
+
class SwinIR(nn.Module):
|
619 |
+
r""" SwinIR
|
620 |
+
A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
|
621 |
+
|
622 |
+
Args:
|
623 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
624 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
625 |
+
in_chans (int): Number of input image channels. Default: 3
|
626 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
627 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
628 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
629 |
+
window_size (int): Window size. Default: 7
|
630 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
631 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
632 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
633 |
+
drop_rate (float): Dropout rate. Default: 0
|
634 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
635 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
636 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
637 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
638 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
639 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
640 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
641 |
+
img_range: Image range. 1. or 255.
|
642 |
+
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
643 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
644 |
+
"""
|
645 |
+
|
646 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
647 |
+
embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6),
|
648 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
649 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
650 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
651 |
+
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
|
652 |
+
**kwargs):
|
653 |
+
super(SwinIR, self).__init__()
|
654 |
+
num_in_ch = in_chans
|
655 |
+
num_out_ch = in_chans
|
656 |
+
num_feat = 64
|
657 |
+
self.img_range = img_range
|
658 |
+
if in_chans == 3:
|
659 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
660 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
661 |
+
else:
|
662 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
663 |
+
self.upscale = upscale
|
664 |
+
self.upsampler = upsampler
|
665 |
+
self.window_size = window_size
|
666 |
+
|
667 |
+
#####################################################################################################
|
668 |
+
################################### 1, shallow feature extraction ###################################
|
669 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
670 |
+
|
671 |
+
#####################################################################################################
|
672 |
+
################################### 2, deep feature extraction ######################################
|
673 |
+
self.num_layers = len(depths)
|
674 |
+
self.embed_dim = embed_dim
|
675 |
+
self.ape = ape
|
676 |
+
self.patch_norm = patch_norm
|
677 |
+
self.num_features = embed_dim
|
678 |
+
self.mlp_ratio = mlp_ratio
|
679 |
+
|
680 |
+
# split image into non-overlapping patches
|
681 |
+
self.patch_embed = PatchEmbed(
|
682 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
683 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
684 |
+
num_patches = self.patch_embed.num_patches
|
685 |
+
patches_resolution = self.patch_embed.patches_resolution
|
686 |
+
self.patches_resolution = patches_resolution
|
687 |
+
|
688 |
+
# merge non-overlapping patches into image
|
689 |
+
self.patch_unembed = PatchUnEmbed(
|
690 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
691 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
692 |
+
|
693 |
+
# absolute position embedding
|
694 |
+
if self.ape:
|
695 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
696 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
697 |
+
|
698 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
699 |
+
|
700 |
+
# stochastic depth
|
701 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
702 |
+
|
703 |
+
# build Residual Swin Transformer blocks (RSTB)
|
704 |
+
self.layers = nn.ModuleList()
|
705 |
+
for i_layer in range(self.num_layers):
|
706 |
+
layer = RSTB(dim=embed_dim,
|
707 |
+
input_resolution=(patches_resolution[0],
|
708 |
+
patches_resolution[1]),
|
709 |
+
depth=depths[i_layer],
|
710 |
+
num_heads=num_heads[i_layer],
|
711 |
+
window_size=window_size,
|
712 |
+
mlp_ratio=self.mlp_ratio,
|
713 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
714 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
715 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
716 |
+
norm_layer=norm_layer,
|
717 |
+
downsample=None,
|
718 |
+
use_checkpoint=use_checkpoint,
|
719 |
+
img_size=img_size,
|
720 |
+
patch_size=patch_size,
|
721 |
+
resi_connection=resi_connection
|
722 |
+
|
723 |
+
)
|
724 |
+
self.layers.append(layer)
|
725 |
+
self.norm = norm_layer(self.num_features)
|
726 |
+
|
727 |
+
# build the last conv layer in deep feature extraction
|
728 |
+
if resi_connection == '1conv':
|
729 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
730 |
+
elif resi_connection == '3conv':
|
731 |
+
# to save parameters and memory
|
732 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
733 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
734 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
735 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
736 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
737 |
+
|
738 |
+
#####################################################################################################
|
739 |
+
################################ 3, high quality image reconstruction ################################
|
740 |
+
if self.upsampler == 'pixelshuffle':
|
741 |
+
# for classical SR
|
742 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
743 |
+
nn.LeakyReLU(inplace=True))
|
744 |
+
self.upsample = Upsample(upscale, num_feat)
|
745 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
746 |
+
elif self.upsampler == 'pixelshuffledirect':
|
747 |
+
# for lightweight SR (to save parameters)
|
748 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
749 |
+
(patches_resolution[0], patches_resolution[1]))
|
750 |
+
elif self.upsampler == 'nearest+conv':
|
751 |
+
# for real-world SR (less artifacts)
|
752 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
753 |
+
nn.LeakyReLU(inplace=True))
|
754 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
755 |
+
if self.upscale == 4:
|
756 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
757 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
758 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
759 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
760 |
+
else:
|
761 |
+
# for image denoising and JPEG compression artifact reduction
|
762 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
763 |
+
|
764 |
+
self.apply(self._init_weights)
|
765 |
+
|
766 |
+
def _init_weights(self, m):
|
767 |
+
if isinstance(m, nn.Linear):
|
768 |
+
trunc_normal_(m.weight, std=.02)
|
769 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
770 |
+
nn.init.constant_(m.bias, 0)
|
771 |
+
elif isinstance(m, nn.LayerNorm):
|
772 |
+
nn.init.constant_(m.bias, 0)
|
773 |
+
nn.init.constant_(m.weight, 1.0)
|
774 |
+
|
775 |
+
@torch.jit.ignore
|
776 |
+
def no_weight_decay(self):
|
777 |
+
return {'absolute_pos_embed'}
|
778 |
+
|
779 |
+
@torch.jit.ignore
|
780 |
+
def no_weight_decay_keywords(self):
|
781 |
+
return {'relative_position_bias_table'}
|
782 |
+
|
783 |
+
def check_image_size(self, x):
|
784 |
+
_, _, h, w = x.size()
|
785 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
786 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
787 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
788 |
+
return x
|
789 |
+
|
790 |
+
def forward_features(self, x):
|
791 |
+
x_size = (x.shape[2], x.shape[3])
|
792 |
+
x = self.patch_embed(x)
|
793 |
+
if self.ape:
|
794 |
+
x = x + self.absolute_pos_embed
|
795 |
+
x = self.pos_drop(x)
|
796 |
+
|
797 |
+
for layer in self.layers:
|
798 |
+
x = layer(x, x_size)
|
799 |
+
|
800 |
+
x = self.norm(x) # B L C
|
801 |
+
x = self.patch_unembed(x, x_size)
|
802 |
+
|
803 |
+
return x
|
804 |
+
|
805 |
+
def forward(self, x):
|
806 |
+
H, W = x.shape[2:]
|
807 |
+
x = self.check_image_size(x)
|
808 |
+
|
809 |
+
self.mean = self.mean.type_as(x)
|
810 |
+
x = (x - self.mean) * self.img_range
|
811 |
+
|
812 |
+
if self.upsampler == 'pixelshuffle':
|
813 |
+
# for classical SR
|
814 |
+
x = self.conv_first(x)
|
815 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
816 |
+
x = self.conv_before_upsample(x)
|
817 |
+
x = self.conv_last(self.upsample(x))
|
818 |
+
elif self.upsampler == 'pixelshuffledirect':
|
819 |
+
# for lightweight SR
|
820 |
+
x = self.conv_first(x)
|
821 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
822 |
+
x = self.upsample(x)
|
823 |
+
elif self.upsampler == 'nearest+conv':
|
824 |
+
# for real-world SR
|
825 |
+
x = self.conv_first(x)
|
826 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
827 |
+
x = self.conv_before_upsample(x)
|
828 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
829 |
+
if self.upscale == 4:
|
830 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
831 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
832 |
+
else:
|
833 |
+
# for image denoising and JPEG compression artifact reduction
|
834 |
+
x_first = self.conv_first(x)
|
835 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
836 |
+
x = x + self.conv_last(res)
|
837 |
+
|
838 |
+
x = x / self.img_range + self.mean
|
839 |
+
|
840 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
841 |
+
|
842 |
+
def flops(self):
|
843 |
+
flops = 0
|
844 |
+
H, W = self.patches_resolution
|
845 |
+
flops += H * W * 3 * self.embed_dim * 9
|
846 |
+
flops += self.patch_embed.flops()
|
847 |
+
for layer in self.layers:
|
848 |
+
flops += layer.flops()
|
849 |
+
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
850 |
+
flops += self.upsample.flops()
|
851 |
+
return flops
|
852 |
+
|
853 |
+
|
854 |
+
if __name__ == '__main__':
|
855 |
+
upscale = 4
|
856 |
+
window_size = 8
|
857 |
+
height = (1024 // upscale // window_size + 1) * window_size
|
858 |
+
width = (720 // upscale // window_size + 1) * window_size
|
859 |
+
model = SwinIR(upscale=2, img_size=(height, width),
|
860 |
+
window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
|
861 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
862 |
+
print(model)
|
863 |
+
print(height, width, model.flops() / 1e9)
|
864 |
+
|
865 |
+
x = torch.randn((1, 3, height, width))
|
866 |
+
x = model(x)
|
867 |
+
print(x.shape)
|
extensions-builtin/SwinIR/swinir_model_arch_v2.py
ADDED
@@ -0,0 +1,1017 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -----------------------------------------------------------------------------------
|
2 |
+
# Swin2SR: Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration, https://arxiv.org/abs/
|
3 |
+
# Written by Conde and Choi et al.
|
4 |
+
# -----------------------------------------------------------------------------------
|
5 |
+
|
6 |
+
import math
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
13 |
+
|
14 |
+
|
15 |
+
class Mlp(nn.Module):
|
16 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
17 |
+
super().__init__()
|
18 |
+
out_features = out_features or in_features
|
19 |
+
hidden_features = hidden_features or in_features
|
20 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
21 |
+
self.act = act_layer()
|
22 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
23 |
+
self.drop = nn.Dropout(drop)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.fc1(x)
|
27 |
+
x = self.act(x)
|
28 |
+
x = self.drop(x)
|
29 |
+
x = self.fc2(x)
|
30 |
+
x = self.drop(x)
|
31 |
+
return x
|
32 |
+
|
33 |
+
|
34 |
+
def window_partition(x, window_size):
|
35 |
+
"""
|
36 |
+
Args:
|
37 |
+
x: (B, H, W, C)
|
38 |
+
window_size (int): window size
|
39 |
+
Returns:
|
40 |
+
windows: (num_windows*B, window_size, window_size, C)
|
41 |
+
"""
|
42 |
+
B, H, W, C = x.shape
|
43 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
44 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
45 |
+
return windows
|
46 |
+
|
47 |
+
|
48 |
+
def window_reverse(windows, window_size, H, W):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
windows: (num_windows*B, window_size, window_size, C)
|
52 |
+
window_size (int): Window size
|
53 |
+
H (int): Height of image
|
54 |
+
W (int): Width of image
|
55 |
+
Returns:
|
56 |
+
x: (B, H, W, C)
|
57 |
+
"""
|
58 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
59 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
60 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
61 |
+
return x
|
62 |
+
|
63 |
+
class WindowAttention(nn.Module):
|
64 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
65 |
+
It supports both of shifted and non-shifted window.
|
66 |
+
Args:
|
67 |
+
dim (int): Number of input channels.
|
68 |
+
window_size (tuple[int]): The height and width of the window.
|
69 |
+
num_heads (int): Number of attention heads.
|
70 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
71 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
72 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
73 |
+
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
|
77 |
+
pretrained_window_size=(0, 0)):
|
78 |
+
|
79 |
+
super().__init__()
|
80 |
+
self.dim = dim
|
81 |
+
self.window_size = window_size # Wh, Ww
|
82 |
+
self.pretrained_window_size = pretrained_window_size
|
83 |
+
self.num_heads = num_heads
|
84 |
+
|
85 |
+
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
|
86 |
+
|
87 |
+
# mlp to generate continuous relative position bias
|
88 |
+
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
89 |
+
nn.ReLU(inplace=True),
|
90 |
+
nn.Linear(512, num_heads, bias=False))
|
91 |
+
|
92 |
+
# get relative_coords_table
|
93 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
94 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
95 |
+
relative_coords_table = torch.stack(
|
96 |
+
torch.meshgrid([relative_coords_h,
|
97 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
98 |
+
if pretrained_window_size[0] > 0:
|
99 |
+
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
100 |
+
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
101 |
+
else:
|
102 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
103 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
104 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
105 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
106 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
107 |
+
|
108 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
109 |
+
|
110 |
+
# get pair-wise relative position index for each token inside the window
|
111 |
+
coords_h = torch.arange(self.window_size[0])
|
112 |
+
coords_w = torch.arange(self.window_size[1])
|
113 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
114 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
115 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
116 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
117 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
118 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
119 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
120 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
121 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
122 |
+
|
123 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=False)
|
124 |
+
if qkv_bias:
|
125 |
+
self.q_bias = nn.Parameter(torch.zeros(dim))
|
126 |
+
self.v_bias = nn.Parameter(torch.zeros(dim))
|
127 |
+
else:
|
128 |
+
self.q_bias = None
|
129 |
+
self.v_bias = None
|
130 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
131 |
+
self.proj = nn.Linear(dim, dim)
|
132 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
133 |
+
self.softmax = nn.Softmax(dim=-1)
|
134 |
+
|
135 |
+
def forward(self, x, mask=None):
|
136 |
+
"""
|
137 |
+
Args:
|
138 |
+
x: input features with shape of (num_windows*B, N, C)
|
139 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
140 |
+
"""
|
141 |
+
B_, N, C = x.shape
|
142 |
+
qkv_bias = None
|
143 |
+
if self.q_bias is not None:
|
144 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
145 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
146 |
+
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
147 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
148 |
+
|
149 |
+
# cosine attention
|
150 |
+
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
151 |
+
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp()
|
152 |
+
attn = attn * logit_scale
|
153 |
+
|
154 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
155 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
156 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
157 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
158 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
159 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
160 |
+
|
161 |
+
if mask is not None:
|
162 |
+
nW = mask.shape[0]
|
163 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
164 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
165 |
+
attn = self.softmax(attn)
|
166 |
+
else:
|
167 |
+
attn = self.softmax(attn)
|
168 |
+
|
169 |
+
attn = self.attn_drop(attn)
|
170 |
+
|
171 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
172 |
+
x = self.proj(x)
|
173 |
+
x = self.proj_drop(x)
|
174 |
+
return x
|
175 |
+
|
176 |
+
def extra_repr(self) -> str:
|
177 |
+
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
178 |
+
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
179 |
+
|
180 |
+
def flops(self, N):
|
181 |
+
# calculate flops for 1 window with token length of N
|
182 |
+
flops = 0
|
183 |
+
# qkv = self.qkv(x)
|
184 |
+
flops += N * self.dim * 3 * self.dim
|
185 |
+
# attn = (q @ k.transpose(-2, -1))
|
186 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
187 |
+
# x = (attn @ v)
|
188 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
189 |
+
# x = self.proj(x)
|
190 |
+
flops += N * self.dim * self.dim
|
191 |
+
return flops
|
192 |
+
|
193 |
+
class SwinTransformerBlock(nn.Module):
|
194 |
+
r""" Swin Transformer Block.
|
195 |
+
Args:
|
196 |
+
dim (int): Number of input channels.
|
197 |
+
input_resolution (tuple[int]): Input resulotion.
|
198 |
+
num_heads (int): Number of attention heads.
|
199 |
+
window_size (int): Window size.
|
200 |
+
shift_size (int): Shift size for SW-MSA.
|
201 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
202 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
203 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
204 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
205 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
206 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
207 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
208 |
+
pretrained_window_size (int): Window size in pre-training.
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
212 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
|
213 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
|
214 |
+
super().__init__()
|
215 |
+
self.dim = dim
|
216 |
+
self.input_resolution = input_resolution
|
217 |
+
self.num_heads = num_heads
|
218 |
+
self.window_size = window_size
|
219 |
+
self.shift_size = shift_size
|
220 |
+
self.mlp_ratio = mlp_ratio
|
221 |
+
if min(self.input_resolution) <= self.window_size:
|
222 |
+
# if window size is larger than input resolution, we don't partition windows
|
223 |
+
self.shift_size = 0
|
224 |
+
self.window_size = min(self.input_resolution)
|
225 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
226 |
+
|
227 |
+
self.norm1 = norm_layer(dim)
|
228 |
+
self.attn = WindowAttention(
|
229 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
230 |
+
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
|
231 |
+
pretrained_window_size=to_2tuple(pretrained_window_size))
|
232 |
+
|
233 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
234 |
+
self.norm2 = norm_layer(dim)
|
235 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
236 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
237 |
+
|
238 |
+
if self.shift_size > 0:
|
239 |
+
attn_mask = self.calculate_mask(self.input_resolution)
|
240 |
+
else:
|
241 |
+
attn_mask = None
|
242 |
+
|
243 |
+
self.register_buffer("attn_mask", attn_mask)
|
244 |
+
|
245 |
+
def calculate_mask(self, x_size):
|
246 |
+
# calculate attention mask for SW-MSA
|
247 |
+
H, W = x_size
|
248 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
249 |
+
h_slices = (slice(0, -self.window_size),
|
250 |
+
slice(-self.window_size, -self.shift_size),
|
251 |
+
slice(-self.shift_size, None))
|
252 |
+
w_slices = (slice(0, -self.window_size),
|
253 |
+
slice(-self.window_size, -self.shift_size),
|
254 |
+
slice(-self.shift_size, None))
|
255 |
+
cnt = 0
|
256 |
+
for h in h_slices:
|
257 |
+
for w in w_slices:
|
258 |
+
img_mask[:, h, w, :] = cnt
|
259 |
+
cnt += 1
|
260 |
+
|
261 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
262 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
263 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
264 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
265 |
+
|
266 |
+
return attn_mask
|
267 |
+
|
268 |
+
def forward(self, x, x_size):
|
269 |
+
H, W = x_size
|
270 |
+
B, L, C = x.shape
|
271 |
+
#assert L == H * W, "input feature has wrong size"
|
272 |
+
|
273 |
+
shortcut = x
|
274 |
+
x = x.view(B, H, W, C)
|
275 |
+
|
276 |
+
# cyclic shift
|
277 |
+
if self.shift_size > 0:
|
278 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
279 |
+
else:
|
280 |
+
shifted_x = x
|
281 |
+
|
282 |
+
# partition windows
|
283 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
284 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
285 |
+
|
286 |
+
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
|
287 |
+
if self.input_resolution == x_size:
|
288 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
289 |
+
else:
|
290 |
+
attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
|
291 |
+
|
292 |
+
# merge windows
|
293 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
294 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
295 |
+
|
296 |
+
# reverse cyclic shift
|
297 |
+
if self.shift_size > 0:
|
298 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
299 |
+
else:
|
300 |
+
x = shifted_x
|
301 |
+
x = x.view(B, H * W, C)
|
302 |
+
x = shortcut + self.drop_path(self.norm1(x))
|
303 |
+
|
304 |
+
# FFN
|
305 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
306 |
+
|
307 |
+
return x
|
308 |
+
|
309 |
+
def extra_repr(self) -> str:
|
310 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
311 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
312 |
+
|
313 |
+
def flops(self):
|
314 |
+
flops = 0
|
315 |
+
H, W = self.input_resolution
|
316 |
+
# norm1
|
317 |
+
flops += self.dim * H * W
|
318 |
+
# W-MSA/SW-MSA
|
319 |
+
nW = H * W / self.window_size / self.window_size
|
320 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
321 |
+
# mlp
|
322 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
323 |
+
# norm2
|
324 |
+
flops += self.dim * H * W
|
325 |
+
return flops
|
326 |
+
|
327 |
+
class PatchMerging(nn.Module):
|
328 |
+
r""" Patch Merging Layer.
|
329 |
+
Args:
|
330 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
331 |
+
dim (int): Number of input channels.
|
332 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
333 |
+
"""
|
334 |
+
|
335 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
336 |
+
super().__init__()
|
337 |
+
self.input_resolution = input_resolution
|
338 |
+
self.dim = dim
|
339 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
340 |
+
self.norm = norm_layer(2 * dim)
|
341 |
+
|
342 |
+
def forward(self, x):
|
343 |
+
"""
|
344 |
+
x: B, H*W, C
|
345 |
+
"""
|
346 |
+
H, W = self.input_resolution
|
347 |
+
B, L, C = x.shape
|
348 |
+
assert L == H * W, "input feature has wrong size"
|
349 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
350 |
+
|
351 |
+
x = x.view(B, H, W, C)
|
352 |
+
|
353 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
354 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
355 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
356 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
357 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
358 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
359 |
+
|
360 |
+
x = self.reduction(x)
|
361 |
+
x = self.norm(x)
|
362 |
+
|
363 |
+
return x
|
364 |
+
|
365 |
+
def extra_repr(self) -> str:
|
366 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
367 |
+
|
368 |
+
def flops(self):
|
369 |
+
H, W = self.input_resolution
|
370 |
+
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
371 |
+
flops += H * W * self.dim // 2
|
372 |
+
return flops
|
373 |
+
|
374 |
+
class BasicLayer(nn.Module):
|
375 |
+
""" A basic Swin Transformer layer for one stage.
|
376 |
+
Args:
|
377 |
+
dim (int): Number of input channels.
|
378 |
+
input_resolution (tuple[int]): Input resolution.
|
379 |
+
depth (int): Number of blocks.
|
380 |
+
num_heads (int): Number of attention heads.
|
381 |
+
window_size (int): Local window size.
|
382 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
383 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
384 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
385 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
386 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
387 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
388 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
389 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
390 |
+
pretrained_window_size (int): Local window size in pre-training.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
394 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
395 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
396 |
+
pretrained_window_size=0):
|
397 |
+
|
398 |
+
super().__init__()
|
399 |
+
self.dim = dim
|
400 |
+
self.input_resolution = input_resolution
|
401 |
+
self.depth = depth
|
402 |
+
self.use_checkpoint = use_checkpoint
|
403 |
+
|
404 |
+
# build blocks
|
405 |
+
self.blocks = nn.ModuleList([
|
406 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
407 |
+
num_heads=num_heads, window_size=window_size,
|
408 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
409 |
+
mlp_ratio=mlp_ratio,
|
410 |
+
qkv_bias=qkv_bias,
|
411 |
+
drop=drop, attn_drop=attn_drop,
|
412 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
413 |
+
norm_layer=norm_layer,
|
414 |
+
pretrained_window_size=pretrained_window_size)
|
415 |
+
for i in range(depth)])
|
416 |
+
|
417 |
+
# patch merging layer
|
418 |
+
if downsample is not None:
|
419 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
420 |
+
else:
|
421 |
+
self.downsample = None
|
422 |
+
|
423 |
+
def forward(self, x, x_size):
|
424 |
+
for blk in self.blocks:
|
425 |
+
if self.use_checkpoint:
|
426 |
+
x = checkpoint.checkpoint(blk, x, x_size)
|
427 |
+
else:
|
428 |
+
x = blk(x, x_size)
|
429 |
+
if self.downsample is not None:
|
430 |
+
x = self.downsample(x)
|
431 |
+
return x
|
432 |
+
|
433 |
+
def extra_repr(self) -> str:
|
434 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
435 |
+
|
436 |
+
def flops(self):
|
437 |
+
flops = 0
|
438 |
+
for blk in self.blocks:
|
439 |
+
flops += blk.flops()
|
440 |
+
if self.downsample is not None:
|
441 |
+
flops += self.downsample.flops()
|
442 |
+
return flops
|
443 |
+
|
444 |
+
def _init_respostnorm(self):
|
445 |
+
for blk in self.blocks:
|
446 |
+
nn.init.constant_(blk.norm1.bias, 0)
|
447 |
+
nn.init.constant_(blk.norm1.weight, 0)
|
448 |
+
nn.init.constant_(blk.norm2.bias, 0)
|
449 |
+
nn.init.constant_(blk.norm2.weight, 0)
|
450 |
+
|
451 |
+
class PatchEmbed(nn.Module):
|
452 |
+
r""" Image to Patch Embedding
|
453 |
+
Args:
|
454 |
+
img_size (int): Image size. Default: 224.
|
455 |
+
patch_size (int): Patch token size. Default: 4.
|
456 |
+
in_chans (int): Number of input image channels. Default: 3.
|
457 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
458 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
459 |
+
"""
|
460 |
+
|
461 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
462 |
+
super().__init__()
|
463 |
+
img_size = to_2tuple(img_size)
|
464 |
+
patch_size = to_2tuple(patch_size)
|
465 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
466 |
+
self.img_size = img_size
|
467 |
+
self.patch_size = patch_size
|
468 |
+
self.patches_resolution = patches_resolution
|
469 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
470 |
+
|
471 |
+
self.in_chans = in_chans
|
472 |
+
self.embed_dim = embed_dim
|
473 |
+
|
474 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
475 |
+
if norm_layer is not None:
|
476 |
+
self.norm = norm_layer(embed_dim)
|
477 |
+
else:
|
478 |
+
self.norm = None
|
479 |
+
|
480 |
+
def forward(self, x):
|
481 |
+
B, C, H, W = x.shape
|
482 |
+
# FIXME look at relaxing size constraints
|
483 |
+
# assert H == self.img_size[0] and W == self.img_size[1],
|
484 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
485 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
486 |
+
if self.norm is not None:
|
487 |
+
x = self.norm(x)
|
488 |
+
return x
|
489 |
+
|
490 |
+
def flops(self):
|
491 |
+
Ho, Wo = self.patches_resolution
|
492 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
493 |
+
if self.norm is not None:
|
494 |
+
flops += Ho * Wo * self.embed_dim
|
495 |
+
return flops
|
496 |
+
|
497 |
+
class RSTB(nn.Module):
|
498 |
+
"""Residual Swin Transformer Block (RSTB).
|
499 |
+
|
500 |
+
Args:
|
501 |
+
dim (int): Number of input channels.
|
502 |
+
input_resolution (tuple[int]): Input resolution.
|
503 |
+
depth (int): Number of blocks.
|
504 |
+
num_heads (int): Number of attention heads.
|
505 |
+
window_size (int): Local window size.
|
506 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
507 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
508 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
509 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
510 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
511 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
512 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
513 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
514 |
+
img_size: Input image size.
|
515 |
+
patch_size: Patch size.
|
516 |
+
resi_connection: The convolutional block before residual connection.
|
517 |
+
"""
|
518 |
+
|
519 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
520 |
+
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0.,
|
521 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
522 |
+
img_size=224, patch_size=4, resi_connection='1conv'):
|
523 |
+
super(RSTB, self).__init__()
|
524 |
+
|
525 |
+
self.dim = dim
|
526 |
+
self.input_resolution = input_resolution
|
527 |
+
|
528 |
+
self.residual_group = BasicLayer(dim=dim,
|
529 |
+
input_resolution=input_resolution,
|
530 |
+
depth=depth,
|
531 |
+
num_heads=num_heads,
|
532 |
+
window_size=window_size,
|
533 |
+
mlp_ratio=mlp_ratio,
|
534 |
+
qkv_bias=qkv_bias,
|
535 |
+
drop=drop, attn_drop=attn_drop,
|
536 |
+
drop_path=drop_path,
|
537 |
+
norm_layer=norm_layer,
|
538 |
+
downsample=downsample,
|
539 |
+
use_checkpoint=use_checkpoint)
|
540 |
+
|
541 |
+
if resi_connection == '1conv':
|
542 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
543 |
+
elif resi_connection == '3conv':
|
544 |
+
# to save parameters and memory
|
545 |
+
self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
546 |
+
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
|
547 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
548 |
+
nn.Conv2d(dim // 4, dim, 3, 1, 1))
|
549 |
+
|
550 |
+
self.patch_embed = PatchEmbed(
|
551 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
552 |
+
norm_layer=None)
|
553 |
+
|
554 |
+
self.patch_unembed = PatchUnEmbed(
|
555 |
+
img_size=img_size, patch_size=patch_size, in_chans=dim, embed_dim=dim,
|
556 |
+
norm_layer=None)
|
557 |
+
|
558 |
+
def forward(self, x, x_size):
|
559 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
|
560 |
+
|
561 |
+
def flops(self):
|
562 |
+
flops = 0
|
563 |
+
flops += self.residual_group.flops()
|
564 |
+
H, W = self.input_resolution
|
565 |
+
flops += H * W * self.dim * self.dim * 9
|
566 |
+
flops += self.patch_embed.flops()
|
567 |
+
flops += self.patch_unembed.flops()
|
568 |
+
|
569 |
+
return flops
|
570 |
+
|
571 |
+
class PatchUnEmbed(nn.Module):
|
572 |
+
r""" Image to Patch Unembedding
|
573 |
+
|
574 |
+
Args:
|
575 |
+
img_size (int): Image size. Default: 224.
|
576 |
+
patch_size (int): Patch token size. Default: 4.
|
577 |
+
in_chans (int): Number of input image channels. Default: 3.
|
578 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
579 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
580 |
+
"""
|
581 |
+
|
582 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
583 |
+
super().__init__()
|
584 |
+
img_size = to_2tuple(img_size)
|
585 |
+
patch_size = to_2tuple(patch_size)
|
586 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
587 |
+
self.img_size = img_size
|
588 |
+
self.patch_size = patch_size
|
589 |
+
self.patches_resolution = patches_resolution
|
590 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
591 |
+
|
592 |
+
self.in_chans = in_chans
|
593 |
+
self.embed_dim = embed_dim
|
594 |
+
|
595 |
+
def forward(self, x, x_size):
|
596 |
+
B, HW, C = x.shape
|
597 |
+
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
|
598 |
+
return x
|
599 |
+
|
600 |
+
def flops(self):
|
601 |
+
flops = 0
|
602 |
+
return flops
|
603 |
+
|
604 |
+
|
605 |
+
class Upsample(nn.Sequential):
|
606 |
+
"""Upsample module.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
610 |
+
num_feat (int): Channel number of intermediate features.
|
611 |
+
"""
|
612 |
+
|
613 |
+
def __init__(self, scale, num_feat):
|
614 |
+
m = []
|
615 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
616 |
+
for _ in range(int(math.log(scale, 2))):
|
617 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
618 |
+
m.append(nn.PixelShuffle(2))
|
619 |
+
elif scale == 3:
|
620 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
621 |
+
m.append(nn.PixelShuffle(3))
|
622 |
+
else:
|
623 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
624 |
+
super(Upsample, self).__init__(*m)
|
625 |
+
|
626 |
+
class Upsample_hf(nn.Sequential):
|
627 |
+
"""Upsample module.
|
628 |
+
|
629 |
+
Args:
|
630 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
631 |
+
num_feat (int): Channel number of intermediate features.
|
632 |
+
"""
|
633 |
+
|
634 |
+
def __init__(self, scale, num_feat):
|
635 |
+
m = []
|
636 |
+
if (scale & (scale - 1)) == 0: # scale = 2^n
|
637 |
+
for _ in range(int(math.log(scale, 2))):
|
638 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
639 |
+
m.append(nn.PixelShuffle(2))
|
640 |
+
elif scale == 3:
|
641 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
642 |
+
m.append(nn.PixelShuffle(3))
|
643 |
+
else:
|
644 |
+
raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
|
645 |
+
super(Upsample_hf, self).__init__(*m)
|
646 |
+
|
647 |
+
|
648 |
+
class UpsampleOneStep(nn.Sequential):
|
649 |
+
"""UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
|
650 |
+
Used in lightweight SR to save parameters.
|
651 |
+
|
652 |
+
Args:
|
653 |
+
scale (int): Scale factor. Supported scales: 2^n and 3.
|
654 |
+
num_feat (int): Channel number of intermediate features.
|
655 |
+
|
656 |
+
"""
|
657 |
+
|
658 |
+
def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
|
659 |
+
self.num_feat = num_feat
|
660 |
+
self.input_resolution = input_resolution
|
661 |
+
m = []
|
662 |
+
m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
|
663 |
+
m.append(nn.PixelShuffle(scale))
|
664 |
+
super(UpsampleOneStep, self).__init__(*m)
|
665 |
+
|
666 |
+
def flops(self):
|
667 |
+
H, W = self.input_resolution
|
668 |
+
flops = H * W * self.num_feat * 3 * 9
|
669 |
+
return flops
|
670 |
+
|
671 |
+
|
672 |
+
|
673 |
+
class Swin2SR(nn.Module):
|
674 |
+
r""" Swin2SR
|
675 |
+
A PyTorch impl of : `Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration`.
|
676 |
+
|
677 |
+
Args:
|
678 |
+
img_size (int | tuple(int)): Input image size. Default 64
|
679 |
+
patch_size (int | tuple(int)): Patch size. Default: 1
|
680 |
+
in_chans (int): Number of input image channels. Default: 3
|
681 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
682 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
683 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
684 |
+
window_size (int): Window size. Default: 7
|
685 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
686 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
687 |
+
drop_rate (float): Dropout rate. Default: 0
|
688 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
689 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
690 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
691 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
692 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
693 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
694 |
+
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
|
695 |
+
img_range: Image range. 1. or 255.
|
696 |
+
upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
|
697 |
+
resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
|
698 |
+
"""
|
699 |
+
|
700 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3,
|
701 |
+
embed_dim=96, depths=(6, 6, 6, 6), num_heads=(6, 6, 6, 6),
|
702 |
+
window_size=7, mlp_ratio=4., qkv_bias=True,
|
703 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
704 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
705 |
+
use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
|
706 |
+
**kwargs):
|
707 |
+
super(Swin2SR, self).__init__()
|
708 |
+
num_in_ch = in_chans
|
709 |
+
num_out_ch = in_chans
|
710 |
+
num_feat = 64
|
711 |
+
self.img_range = img_range
|
712 |
+
if in_chans == 3:
|
713 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
714 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
715 |
+
else:
|
716 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
717 |
+
self.upscale = upscale
|
718 |
+
self.upsampler = upsampler
|
719 |
+
self.window_size = window_size
|
720 |
+
|
721 |
+
#####################################################################################################
|
722 |
+
################################### 1, shallow feature extraction ###################################
|
723 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
724 |
+
|
725 |
+
#####################################################################################################
|
726 |
+
################################### 2, deep feature extraction ######################################
|
727 |
+
self.num_layers = len(depths)
|
728 |
+
self.embed_dim = embed_dim
|
729 |
+
self.ape = ape
|
730 |
+
self.patch_norm = patch_norm
|
731 |
+
self.num_features = embed_dim
|
732 |
+
self.mlp_ratio = mlp_ratio
|
733 |
+
|
734 |
+
# split image into non-overlapping patches
|
735 |
+
self.patch_embed = PatchEmbed(
|
736 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
737 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
738 |
+
num_patches = self.patch_embed.num_patches
|
739 |
+
patches_resolution = self.patch_embed.patches_resolution
|
740 |
+
self.patches_resolution = patches_resolution
|
741 |
+
|
742 |
+
# merge non-overlapping patches into image
|
743 |
+
self.patch_unembed = PatchUnEmbed(
|
744 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
745 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
746 |
+
|
747 |
+
# absolute position embedding
|
748 |
+
if self.ape:
|
749 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
750 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
751 |
+
|
752 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
753 |
+
|
754 |
+
# stochastic depth
|
755 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
756 |
+
|
757 |
+
# build Residual Swin Transformer blocks (RSTB)
|
758 |
+
self.layers = nn.ModuleList()
|
759 |
+
for i_layer in range(self.num_layers):
|
760 |
+
layer = RSTB(dim=embed_dim,
|
761 |
+
input_resolution=(patches_resolution[0],
|
762 |
+
patches_resolution[1]),
|
763 |
+
depth=depths[i_layer],
|
764 |
+
num_heads=num_heads[i_layer],
|
765 |
+
window_size=window_size,
|
766 |
+
mlp_ratio=self.mlp_ratio,
|
767 |
+
qkv_bias=qkv_bias,
|
768 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
769 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
770 |
+
norm_layer=norm_layer,
|
771 |
+
downsample=None,
|
772 |
+
use_checkpoint=use_checkpoint,
|
773 |
+
img_size=img_size,
|
774 |
+
patch_size=patch_size,
|
775 |
+
resi_connection=resi_connection
|
776 |
+
|
777 |
+
)
|
778 |
+
self.layers.append(layer)
|
779 |
+
|
780 |
+
if self.upsampler == 'pixelshuffle_hf':
|
781 |
+
self.layers_hf = nn.ModuleList()
|
782 |
+
for i_layer in range(self.num_layers):
|
783 |
+
layer = RSTB(dim=embed_dim,
|
784 |
+
input_resolution=(patches_resolution[0],
|
785 |
+
patches_resolution[1]),
|
786 |
+
depth=depths[i_layer],
|
787 |
+
num_heads=num_heads[i_layer],
|
788 |
+
window_size=window_size,
|
789 |
+
mlp_ratio=self.mlp_ratio,
|
790 |
+
qkv_bias=qkv_bias,
|
791 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
792 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
|
793 |
+
norm_layer=norm_layer,
|
794 |
+
downsample=None,
|
795 |
+
use_checkpoint=use_checkpoint,
|
796 |
+
img_size=img_size,
|
797 |
+
patch_size=patch_size,
|
798 |
+
resi_connection=resi_connection
|
799 |
+
|
800 |
+
)
|
801 |
+
self.layers_hf.append(layer)
|
802 |
+
|
803 |
+
self.norm = norm_layer(self.num_features)
|
804 |
+
|
805 |
+
# build the last conv layer in deep feature extraction
|
806 |
+
if resi_connection == '1conv':
|
807 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
808 |
+
elif resi_connection == '3conv':
|
809 |
+
# to save parameters and memory
|
810 |
+
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
|
811 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
812 |
+
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
|
813 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
814 |
+
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
|
815 |
+
|
816 |
+
#####################################################################################################
|
817 |
+
################################ 3, high quality image reconstruction ################################
|
818 |
+
if self.upsampler == 'pixelshuffle':
|
819 |
+
# for classical SR
|
820 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
821 |
+
nn.LeakyReLU(inplace=True))
|
822 |
+
self.upsample = Upsample(upscale, num_feat)
|
823 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
824 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
825 |
+
self.conv_bicubic = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
|
826 |
+
self.conv_before_upsample = nn.Sequential(
|
827 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
828 |
+
nn.LeakyReLU(inplace=True))
|
829 |
+
self.conv_aux = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
830 |
+
self.conv_after_aux = nn.Sequential(
|
831 |
+
nn.Conv2d(3, num_feat, 3, 1, 1),
|
832 |
+
nn.LeakyReLU(inplace=True))
|
833 |
+
self.upsample = Upsample(upscale, num_feat)
|
834 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
835 |
+
|
836 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
837 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
838 |
+
nn.LeakyReLU(inplace=True))
|
839 |
+
self.upsample = Upsample(upscale, num_feat)
|
840 |
+
self.upsample_hf = Upsample_hf(upscale, num_feat)
|
841 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
842 |
+
self.conv_first_hf = nn.Sequential(nn.Conv2d(num_feat, embed_dim, 3, 1, 1),
|
843 |
+
nn.LeakyReLU(inplace=True))
|
844 |
+
self.conv_after_body_hf = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
845 |
+
self.conv_before_upsample_hf = nn.Sequential(
|
846 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
847 |
+
nn.LeakyReLU(inplace=True))
|
848 |
+
self.conv_last_hf = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
849 |
+
|
850 |
+
elif self.upsampler == 'pixelshuffledirect':
|
851 |
+
# for lightweight SR (to save parameters)
|
852 |
+
self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
|
853 |
+
(patches_resolution[0], patches_resolution[1]))
|
854 |
+
elif self.upsampler == 'nearest+conv':
|
855 |
+
# for real-world SR (less artifacts)
|
856 |
+
assert self.upscale == 4, 'only support x4 now.'
|
857 |
+
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
|
858 |
+
nn.LeakyReLU(inplace=True))
|
859 |
+
self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
860 |
+
self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
861 |
+
self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
|
862 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
863 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
864 |
+
else:
|
865 |
+
# for image denoising and JPEG compression artifact reduction
|
866 |
+
self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
|
867 |
+
|
868 |
+
self.apply(self._init_weights)
|
869 |
+
|
870 |
+
def _init_weights(self, m):
|
871 |
+
if isinstance(m, nn.Linear):
|
872 |
+
trunc_normal_(m.weight, std=.02)
|
873 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
874 |
+
nn.init.constant_(m.bias, 0)
|
875 |
+
elif isinstance(m, nn.LayerNorm):
|
876 |
+
nn.init.constant_(m.bias, 0)
|
877 |
+
nn.init.constant_(m.weight, 1.0)
|
878 |
+
|
879 |
+
@torch.jit.ignore
|
880 |
+
def no_weight_decay(self):
|
881 |
+
return {'absolute_pos_embed'}
|
882 |
+
|
883 |
+
@torch.jit.ignore
|
884 |
+
def no_weight_decay_keywords(self):
|
885 |
+
return {'relative_position_bias_table'}
|
886 |
+
|
887 |
+
def check_image_size(self, x):
|
888 |
+
_, _, h, w = x.size()
|
889 |
+
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
|
890 |
+
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
|
891 |
+
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
|
892 |
+
return x
|
893 |
+
|
894 |
+
def forward_features(self, x):
|
895 |
+
x_size = (x.shape[2], x.shape[3])
|
896 |
+
x = self.patch_embed(x)
|
897 |
+
if self.ape:
|
898 |
+
x = x + self.absolute_pos_embed
|
899 |
+
x = self.pos_drop(x)
|
900 |
+
|
901 |
+
for layer in self.layers:
|
902 |
+
x = layer(x, x_size)
|
903 |
+
|
904 |
+
x = self.norm(x) # B L C
|
905 |
+
x = self.patch_unembed(x, x_size)
|
906 |
+
|
907 |
+
return x
|
908 |
+
|
909 |
+
def forward_features_hf(self, x):
|
910 |
+
x_size = (x.shape[2], x.shape[3])
|
911 |
+
x = self.patch_embed(x)
|
912 |
+
if self.ape:
|
913 |
+
x = x + self.absolute_pos_embed
|
914 |
+
x = self.pos_drop(x)
|
915 |
+
|
916 |
+
for layer in self.layers_hf:
|
917 |
+
x = layer(x, x_size)
|
918 |
+
|
919 |
+
x = self.norm(x) # B L C
|
920 |
+
x = self.patch_unembed(x, x_size)
|
921 |
+
|
922 |
+
return x
|
923 |
+
|
924 |
+
def forward(self, x):
|
925 |
+
H, W = x.shape[2:]
|
926 |
+
x = self.check_image_size(x)
|
927 |
+
|
928 |
+
self.mean = self.mean.type_as(x)
|
929 |
+
x = (x - self.mean) * self.img_range
|
930 |
+
|
931 |
+
if self.upsampler == 'pixelshuffle':
|
932 |
+
# for classical SR
|
933 |
+
x = self.conv_first(x)
|
934 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
935 |
+
x = self.conv_before_upsample(x)
|
936 |
+
x = self.conv_last(self.upsample(x))
|
937 |
+
elif self.upsampler == 'pixelshuffle_aux':
|
938 |
+
bicubic = F.interpolate(x, size=(H * self.upscale, W * self.upscale), mode='bicubic', align_corners=False)
|
939 |
+
bicubic = self.conv_bicubic(bicubic)
|
940 |
+
x = self.conv_first(x)
|
941 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
942 |
+
x = self.conv_before_upsample(x)
|
943 |
+
aux = self.conv_aux(x) # b, 3, LR_H, LR_W
|
944 |
+
x = self.conv_after_aux(aux)
|
945 |
+
x = self.upsample(x)[:, :, :H * self.upscale, :W * self.upscale] + bicubic[:, :, :H * self.upscale, :W * self.upscale]
|
946 |
+
x = self.conv_last(x)
|
947 |
+
aux = aux / self.img_range + self.mean
|
948 |
+
elif self.upsampler == 'pixelshuffle_hf':
|
949 |
+
# for classical SR with HF
|
950 |
+
x = self.conv_first(x)
|
951 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
952 |
+
x_before = self.conv_before_upsample(x)
|
953 |
+
x_out = self.conv_last(self.upsample(x_before))
|
954 |
+
|
955 |
+
x_hf = self.conv_first_hf(x_before)
|
956 |
+
x_hf = self.conv_after_body_hf(self.forward_features_hf(x_hf)) + x_hf
|
957 |
+
x_hf = self.conv_before_upsample_hf(x_hf)
|
958 |
+
x_hf = self.conv_last_hf(self.upsample_hf(x_hf))
|
959 |
+
x = x_out + x_hf
|
960 |
+
x_hf = x_hf / self.img_range + self.mean
|
961 |
+
|
962 |
+
elif self.upsampler == 'pixelshuffledirect':
|
963 |
+
# for lightweight SR
|
964 |
+
x = self.conv_first(x)
|
965 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
966 |
+
x = self.upsample(x)
|
967 |
+
elif self.upsampler == 'nearest+conv':
|
968 |
+
# for real-world SR
|
969 |
+
x = self.conv_first(x)
|
970 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
971 |
+
x = self.conv_before_upsample(x)
|
972 |
+
x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
973 |
+
x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
|
974 |
+
x = self.conv_last(self.lrelu(self.conv_hr(x)))
|
975 |
+
else:
|
976 |
+
# for image denoising and JPEG compression artifact reduction
|
977 |
+
x_first = self.conv_first(x)
|
978 |
+
res = self.conv_after_body(self.forward_features(x_first)) + x_first
|
979 |
+
x = x + self.conv_last(res)
|
980 |
+
|
981 |
+
x = x / self.img_range + self.mean
|
982 |
+
if self.upsampler == "pixelshuffle_aux":
|
983 |
+
return x[:, :, :H*self.upscale, :W*self.upscale], aux
|
984 |
+
|
985 |
+
elif self.upsampler == "pixelshuffle_hf":
|
986 |
+
x_out = x_out / self.img_range + self.mean
|
987 |
+
return x_out[:, :, :H*self.upscale, :W*self.upscale], x[:, :, :H*self.upscale, :W*self.upscale], x_hf[:, :, :H*self.upscale, :W*self.upscale]
|
988 |
+
|
989 |
+
else:
|
990 |
+
return x[:, :, :H*self.upscale, :W*self.upscale]
|
991 |
+
|
992 |
+
def flops(self):
|
993 |
+
flops = 0
|
994 |
+
H, W = self.patches_resolution
|
995 |
+
flops += H * W * 3 * self.embed_dim * 9
|
996 |
+
flops += self.patch_embed.flops()
|
997 |
+
for layer in self.layers:
|
998 |
+
flops += layer.flops()
|
999 |
+
flops += H * W * 3 * self.embed_dim * self.embed_dim
|
1000 |
+
flops += self.upsample.flops()
|
1001 |
+
return flops
|
1002 |
+
|
1003 |
+
|
1004 |
+
if __name__ == '__main__':
|
1005 |
+
upscale = 4
|
1006 |
+
window_size = 8
|
1007 |
+
height = (1024 // upscale // window_size + 1) * window_size
|
1008 |
+
width = (720 // upscale // window_size + 1) * window_size
|
1009 |
+
model = Swin2SR(upscale=2, img_size=(height, width),
|
1010 |
+
window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
|
1011 |
+
embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
|
1012 |
+
print(model)
|
1013 |
+
print(height, width, model.flops() / 1e9)
|
1014 |
+
|
1015 |
+
x = torch.randn((1, 3, height, width))
|
1016 |
+
x = model(x)
|
1017 |
+
print(x.shape)
|
extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js
ADDED
@@ -0,0 +1,640 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
onUiLoaded(async() => {
|
2 |
+
const elementIDs = {
|
3 |
+
img2imgTabs: "#mode_img2img .tab-nav",
|
4 |
+
inpaint: "#img2maskimg",
|
5 |
+
inpaintSketch: "#inpaint_sketch",
|
6 |
+
rangeGroup: "#img2img_column_size",
|
7 |
+
sketch: "#img2img_sketch",
|
8 |
+
};
|
9 |
+
const tabNameToElementId = {
|
10 |
+
"Inpaint sketch": elementIDs.inpaintSketch,
|
11 |
+
"Inpaint": elementIDs.inpaint,
|
12 |
+
"Sketch": elementIDs.sketch,
|
13 |
+
};
|
14 |
+
|
15 |
+
// Helper functions
|
16 |
+
// Get active tab
|
17 |
+
function getActiveTab(elements, all = false) {
|
18 |
+
const tabs = elements.img2imgTabs.querySelectorAll("button");
|
19 |
+
|
20 |
+
if (all) return tabs;
|
21 |
+
|
22 |
+
for (let tab of tabs) {
|
23 |
+
if (tab.classList.contains("selected")) {
|
24 |
+
return tab;
|
25 |
+
}
|
26 |
+
}
|
27 |
+
}
|
28 |
+
|
29 |
+
// Get tab ID
|
30 |
+
function getTabId(elements) {
|
31 |
+
const activeTab = getActiveTab(elements);
|
32 |
+
return tabNameToElementId[activeTab.innerText];
|
33 |
+
}
|
34 |
+
|
35 |
+
// Wait until opts loaded
|
36 |
+
async function waitForOpts() {
|
37 |
+
for (;;) {
|
38 |
+
if (window.opts && Object.keys(window.opts).length) {
|
39 |
+
return window.opts;
|
40 |
+
}
|
41 |
+
await new Promise(resolve => setTimeout(resolve, 100));
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
// Check is hotkey valid
|
46 |
+
function isSingleLetter(value) {
|
47 |
+
return (
|
48 |
+
typeof value === "string" && value.length === 1 && /[a-z]/i.test(value)
|
49 |
+
);
|
50 |
+
}
|
51 |
+
|
52 |
+
// Create hotkeyConfig from opts
|
53 |
+
function createHotkeyConfig(defaultHotkeysConfig, hotkeysConfigOpts) {
|
54 |
+
const result = {};
|
55 |
+
const usedKeys = new Set();
|
56 |
+
|
57 |
+
for (const key in defaultHotkeysConfig) {
|
58 |
+
if (typeof hotkeysConfigOpts[key] === "boolean") {
|
59 |
+
result[key] = hotkeysConfigOpts[key];
|
60 |
+
continue;
|
61 |
+
}
|
62 |
+
if (
|
63 |
+
hotkeysConfigOpts[key] &&
|
64 |
+
isSingleLetter(hotkeysConfigOpts[key]) &&
|
65 |
+
!usedKeys.has(hotkeysConfigOpts[key].toUpperCase())
|
66 |
+
) {
|
67 |
+
// If the property passed the test and has not yet been used, add 'Key' before it and save it
|
68 |
+
result[key] = "Key" + hotkeysConfigOpts[key].toUpperCase();
|
69 |
+
usedKeys.add(hotkeysConfigOpts[key].toUpperCase());
|
70 |
+
} else {
|
71 |
+
// If the property does not pass the test or has already been used, we keep the default value
|
72 |
+
console.error(
|
73 |
+
`Hotkey: ${hotkeysConfigOpts[key]} for ${key} is repeated and conflicts with another hotkey or is not 1 letter. The default hotkey is used: ${defaultHotkeysConfig[key][3]}`
|
74 |
+
);
|
75 |
+
result[key] = defaultHotkeysConfig[key];
|
76 |
+
}
|
77 |
+
}
|
78 |
+
|
79 |
+
return result;
|
80 |
+
}
|
81 |
+
|
82 |
+
/**
|
83 |
+
* The restoreImgRedMask function displays a red mask around an image to indicate the aspect ratio.
|
84 |
+
* If the image display property is set to 'none', the mask breaks. To fix this, the function
|
85 |
+
* temporarily sets the display property to 'block' and then hides the mask again after 300 milliseconds
|
86 |
+
* to avoid breaking the canvas. Additionally, the function adjusts the mask to work correctly on
|
87 |
+
* very long images.
|
88 |
+
*/
|
89 |
+
function restoreImgRedMask(elements) {
|
90 |
+
const mainTabId = getTabId(elements);
|
91 |
+
|
92 |
+
if (!mainTabId) return;
|
93 |
+
|
94 |
+
const mainTab = gradioApp().querySelector(mainTabId);
|
95 |
+
const img = mainTab.querySelector("img");
|
96 |
+
const imageARPreview = gradioApp().querySelector("#imageARPreview");
|
97 |
+
|
98 |
+
if (!img || !imageARPreview) return;
|
99 |
+
|
100 |
+
imageARPreview.style.transform = "";
|
101 |
+
if (parseFloat(mainTab.style.width) > 865) {
|
102 |
+
const transformString = mainTab.style.transform;
|
103 |
+
const scaleMatch = transformString.match(/scale\(([-+]?[0-9]*\.?[0-9]+)\)/);
|
104 |
+
let zoom = 1; // default zoom
|
105 |
+
|
106 |
+
if (scaleMatch && scaleMatch[1]) {
|
107 |
+
zoom = Number(scaleMatch[1]);
|
108 |
+
}
|
109 |
+
|
110 |
+
imageARPreview.style.transformOrigin = "0 0";
|
111 |
+
imageARPreview.style.transform = `scale(${zoom})`;
|
112 |
+
}
|
113 |
+
|
114 |
+
if (img.style.display !== "none") return;
|
115 |
+
|
116 |
+
img.style.display = "block";
|
117 |
+
|
118 |
+
setTimeout(() => {
|
119 |
+
img.style.display = "none";
|
120 |
+
}, 400);
|
121 |
+
}
|
122 |
+
|
123 |
+
const hotkeysConfigOpts = await waitForOpts();
|
124 |
+
|
125 |
+
// Default config
|
126 |
+
const defaultHotkeysConfig = {
|
127 |
+
canvas_hotkey_reset: "KeyR",
|
128 |
+
canvas_hotkey_fullscreen: "KeyS",
|
129 |
+
canvas_hotkey_move: "KeyF",
|
130 |
+
canvas_hotkey_overlap: "KeyO",
|
131 |
+
canvas_show_tooltip: true,
|
132 |
+
canvas_swap_controls: false
|
133 |
+
};
|
134 |
+
// swap the actions for ctr + wheel and shift + wheel
|
135 |
+
const hotkeysConfig = createHotkeyConfig(
|
136 |
+
defaultHotkeysConfig,
|
137 |
+
hotkeysConfigOpts
|
138 |
+
);
|
139 |
+
|
140 |
+
let isMoving = false;
|
141 |
+
let mouseX, mouseY;
|
142 |
+
let activeElement;
|
143 |
+
|
144 |
+
const elements = Object.fromEntries(Object.keys(elementIDs).map((id) => [
|
145 |
+
id,
|
146 |
+
gradioApp().querySelector(elementIDs[id]),
|
147 |
+
]));
|
148 |
+
const elemData = {};
|
149 |
+
|
150 |
+
// Apply functionality to the range inputs. Restore redmask and correct for long images.
|
151 |
+
const rangeInputs = elements.rangeGroup ? Array.from(elements.rangeGroup.querySelectorAll("input")) :
|
152 |
+
[
|
153 |
+
gradioApp().querySelector("#img2img_width input[type='range']"),
|
154 |
+
gradioApp().querySelector("#img2img_height input[type='range']")
|
155 |
+
];
|
156 |
+
|
157 |
+
for (const input of rangeInputs) {
|
158 |
+
input?.addEventListener("input", () => restoreImgRedMask(elements));
|
159 |
+
}
|
160 |
+
|
161 |
+
function applyZoomAndPan(elemId) {
|
162 |
+
const targetElement = gradioApp().querySelector(elemId);
|
163 |
+
|
164 |
+
if (!targetElement) {
|
165 |
+
console.log("Element not found");
|
166 |
+
return;
|
167 |
+
}
|
168 |
+
|
169 |
+
targetElement.style.transformOrigin = "0 0";
|
170 |
+
|
171 |
+
elemData[elemId] = {
|
172 |
+
zoom: 1,
|
173 |
+
panX: 0,
|
174 |
+
panY: 0
|
175 |
+
};
|
176 |
+
let fullScreenMode = false;
|
177 |
+
|
178 |
+
// Create tooltip
|
179 |
+
function createTooltip() {
|
180 |
+
const toolTipElemnt =
|
181 |
+
targetElement.querySelector(".image-container");
|
182 |
+
const tooltip = document.createElement("div");
|
183 |
+
tooltip.className = "tooltip";
|
184 |
+
|
185 |
+
// Creating an item of information
|
186 |
+
const info = document.createElement("i");
|
187 |
+
info.className = "tooltip-info";
|
188 |
+
info.textContent = "";
|
189 |
+
|
190 |
+
// Create a container for the contents of the tooltip
|
191 |
+
const tooltipContent = document.createElement("div");
|
192 |
+
tooltipContent.className = "tooltip-content";
|
193 |
+
|
194 |
+
// Add info about hotkeys
|
195 |
+
const zoomKey = hotkeysConfig.canvas_swap_controls ? "Ctrl" : "Shift";
|
196 |
+
const adjustKey = hotkeysConfig.canvas_swap_controls ? "Shift" : "Ctrl";
|
197 |
+
|
198 |
+
const hotkeys = [
|
199 |
+
{key: `${zoomKey} + wheel`, action: "Zoom canvas"},
|
200 |
+
{key: `${adjustKey} + wheel`, action: "Adjust brush size"},
|
201 |
+
{
|
202 |
+
key: hotkeysConfig.canvas_hotkey_reset.charAt(hotkeysConfig.canvas_hotkey_reset.length - 1),
|
203 |
+
action: "Reset zoom"
|
204 |
+
},
|
205 |
+
{
|
206 |
+
key: hotkeysConfig.canvas_hotkey_fullscreen.charAt(hotkeysConfig.canvas_hotkey_fullscreen.length - 1),
|
207 |
+
action: "Fullscreen mode"
|
208 |
+
},
|
209 |
+
{
|
210 |
+
key: hotkeysConfig.canvas_hotkey_move.charAt(hotkeysConfig.canvas_hotkey_move.length - 1),
|
211 |
+
action: "Move canvas"
|
212 |
+
}
|
213 |
+
];
|
214 |
+
for (const hotkey of hotkeys) {
|
215 |
+
const p = document.createElement("p");
|
216 |
+
p.innerHTML = `<b>${hotkey.key}</b> - ${hotkey.action}`;
|
217 |
+
tooltipContent.appendChild(p);
|
218 |
+
}
|
219 |
+
|
220 |
+
// Add information and content elements to the tooltip element
|
221 |
+
tooltip.appendChild(info);
|
222 |
+
tooltip.appendChild(tooltipContent);
|
223 |
+
|
224 |
+
// Add a hint element to the target element
|
225 |
+
toolTipElemnt.appendChild(tooltip);
|
226 |
+
}
|
227 |
+
|
228 |
+
//Show tool tip if setting enable
|
229 |
+
if (hotkeysConfig.canvas_show_tooltip) {
|
230 |
+
createTooltip();
|
231 |
+
}
|
232 |
+
|
233 |
+
// In the course of research, it was found that the tag img is very harmful when zooming and creates white canvases. This hack allows you to almost never think about this problem, it has no effect on webui.
|
234 |
+
function fixCanvas() {
|
235 |
+
const activeTab = getActiveTab(elements).textContent.trim();
|
236 |
+
|
237 |
+
if (activeTab !== "img2img") {
|
238 |
+
const img = targetElement.querySelector(`${elemId} img`);
|
239 |
+
|
240 |
+
if (img && img.style.display !== "none") {
|
241 |
+
img.style.display = "none";
|
242 |
+
img.style.visibility = "hidden";
|
243 |
+
}
|
244 |
+
}
|
245 |
+
}
|
246 |
+
|
247 |
+
// Reset the zoom level and pan position of the target element to their initial values
|
248 |
+
function resetZoom() {
|
249 |
+
elemData[elemId] = {
|
250 |
+
zoomLevel: 1,
|
251 |
+
panX: 0,
|
252 |
+
panY: 0
|
253 |
+
};
|
254 |
+
|
255 |
+
fixCanvas();
|
256 |
+
targetElement.style.transform = `scale(${elemData[elemId].zoomLevel}) translate(${elemData[elemId].panX}px, ${elemData[elemId].panY}px)`;
|
257 |
+
|
258 |
+
const canvas = gradioApp().querySelector(
|
259 |
+
`${elemId} canvas[key="interface"]`
|
260 |
+
);
|
261 |
+
|
262 |
+
toggleOverlap("off");
|
263 |
+
fullScreenMode = false;
|
264 |
+
|
265 |
+
if (
|
266 |
+
canvas &&
|
267 |
+
parseFloat(canvas.style.width) > 865 &&
|
268 |
+
parseFloat(targetElement.style.width) > 865
|
269 |
+
) {
|
270 |
+
fitToElement();
|
271 |
+
return;
|
272 |
+
}
|
273 |
+
|
274 |
+
targetElement.style.width = "";
|
275 |
+
if (canvas) {
|
276 |
+
targetElement.style.height = canvas.style.height;
|
277 |
+
}
|
278 |
+
}
|
279 |
+
|
280 |
+
// Toggle the zIndex of the target element between two values, allowing it to overlap or be overlapped by other elements
|
281 |
+
function toggleOverlap(forced = "") {
|
282 |
+
const zIndex1 = "0";
|
283 |
+
const zIndex2 = "998";
|
284 |
+
|
285 |
+
targetElement.style.zIndex =
|
286 |
+
targetElement.style.zIndex !== zIndex2 ? zIndex2 : zIndex1;
|
287 |
+
|
288 |
+
if (forced === "off") {
|
289 |
+
targetElement.style.zIndex = zIndex1;
|
290 |
+
} else if (forced === "on") {
|
291 |
+
targetElement.style.zIndex = zIndex2;
|
292 |
+
}
|
293 |
+
}
|
294 |
+
|
295 |
+
// Adjust the brush size based on the deltaY value from a mouse wheel event
|
296 |
+
function adjustBrushSize(
|
297 |
+
elemId,
|
298 |
+
deltaY,
|
299 |
+
withoutValue = false,
|
300 |
+
percentage = 5
|
301 |
+
) {
|
302 |
+
const input =
|
303 |
+
gradioApp().querySelector(
|
304 |
+
`${elemId} input[aria-label='Brush radius']`
|
305 |
+
) ||
|
306 |
+
gradioApp().querySelector(
|
307 |
+
`${elemId} button[aria-label="Use brush"]`
|
308 |
+
);
|
309 |
+
|
310 |
+
if (input) {
|
311 |
+
input.click();
|
312 |
+
if (!withoutValue) {
|
313 |
+
const maxValue =
|
314 |
+
parseFloat(input.getAttribute("max")) || 100;
|
315 |
+
const changeAmount = maxValue * (percentage / 100);
|
316 |
+
const newValue =
|
317 |
+
parseFloat(input.value) +
|
318 |
+
(deltaY > 0 ? -changeAmount : changeAmount);
|
319 |
+
input.value = Math.min(Math.max(newValue, 0), maxValue);
|
320 |
+
input.dispatchEvent(new Event("change"));
|
321 |
+
}
|
322 |
+
}
|
323 |
+
}
|
324 |
+
|
325 |
+
// Reset zoom when uploading a new image
|
326 |
+
const fileInput = gradioApp().querySelector(
|
327 |
+
`${elemId} input[type="file"][accept="image/*"].svelte-116rqfv`
|
328 |
+
);
|
329 |
+
fileInput.addEventListener("click", resetZoom);
|
330 |
+
|
331 |
+
// Update the zoom level and pan position of the target element based on the values of the zoomLevel, panX and panY variables
|
332 |
+
function updateZoom(newZoomLevel, mouseX, mouseY) {
|
333 |
+
newZoomLevel = Math.max(0.5, Math.min(newZoomLevel, 15));
|
334 |
+
|
335 |
+
elemData[elemId].panX +=
|
336 |
+
mouseX - (mouseX * newZoomLevel) / elemData[elemId].zoomLevel;
|
337 |
+
elemData[elemId].panY +=
|
338 |
+
mouseY - (mouseY * newZoomLevel) / elemData[elemId].zoomLevel;
|
339 |
+
|
340 |
+
targetElement.style.transformOrigin = "0 0";
|
341 |
+
targetElement.style.transform = `translate(${elemData[elemId].panX}px, ${elemData[elemId].panY}px) scale(${newZoomLevel})`;
|
342 |
+
|
343 |
+
toggleOverlap("on");
|
344 |
+
return newZoomLevel;
|
345 |
+
}
|
346 |
+
|
347 |
+
// Change the zoom level based on user interaction
|
348 |
+
function changeZoomLevel(operation, e) {
|
349 |
+
if (
|
350 |
+
(!hotkeysConfig.canvas_swap_controls && e.shiftKey) ||
|
351 |
+
(hotkeysConfig.canvas_swap_controls && e.ctrlKey)
|
352 |
+
) {
|
353 |
+
e.preventDefault();
|
354 |
+
|
355 |
+
let zoomPosX, zoomPosY;
|
356 |
+
let delta = 0.2;
|
357 |
+
if (elemData[elemId].zoomLevel > 7) {
|
358 |
+
delta = 0.9;
|
359 |
+
} else if (elemData[elemId].zoomLevel > 2) {
|
360 |
+
delta = 0.6;
|
361 |
+
}
|
362 |
+
|
363 |
+
zoomPosX = e.clientX;
|
364 |
+
zoomPosY = e.clientY;
|
365 |
+
|
366 |
+
fullScreenMode = false;
|
367 |
+
elemData[elemId].zoomLevel = updateZoom(
|
368 |
+
elemData[elemId].zoomLevel +
|
369 |
+
(operation === "+" ? delta : -delta),
|
370 |
+
zoomPosX - targetElement.getBoundingClientRect().left,
|
371 |
+
zoomPosY - targetElement.getBoundingClientRect().top
|
372 |
+
);
|
373 |
+
}
|
374 |
+
}
|
375 |
+
|
376 |
+
/**
|
377 |
+
* This function fits the target element to the screen by calculating
|
378 |
+
* the required scale and offsets. It also updates the global variables
|
379 |
+
* zoomLevel, panX, and panY to reflect the new state.
|
380 |
+
*/
|
381 |
+
|
382 |
+
function fitToElement() {
|
383 |
+
//Reset Zoom
|
384 |
+
targetElement.style.transform = `translate(${0}px, ${0}px) scale(${1})`;
|
385 |
+
|
386 |
+
// Get element and screen dimensions
|
387 |
+
const elementWidth = targetElement.offsetWidth;
|
388 |
+
const elementHeight = targetElement.offsetHeight;
|
389 |
+
const parentElement = targetElement.parentElement;
|
390 |
+
const screenWidth = parentElement.clientWidth;
|
391 |
+
const screenHeight = parentElement.clientHeight;
|
392 |
+
|
393 |
+
// Get element's coordinates relative to the parent element
|
394 |
+
const elementRect = targetElement.getBoundingClientRect();
|
395 |
+
const parentRect = parentElement.getBoundingClientRect();
|
396 |
+
const elementX = elementRect.x - parentRect.x;
|
397 |
+
|
398 |
+
// Calculate scale and offsets
|
399 |
+
const scaleX = screenWidth / elementWidth;
|
400 |
+
const scaleY = screenHeight / elementHeight;
|
401 |
+
const scale = Math.min(scaleX, scaleY);
|
402 |
+
|
403 |
+
const transformOrigin =
|
404 |
+
window.getComputedStyle(targetElement).transformOrigin;
|
405 |
+
const [originX, originY] = transformOrigin.split(" ");
|
406 |
+
const originXValue = parseFloat(originX);
|
407 |
+
const originYValue = parseFloat(originY);
|
408 |
+
|
409 |
+
const offsetX =
|
410 |
+
(screenWidth - elementWidth * scale) / 2 -
|
411 |
+
originXValue * (1 - scale);
|
412 |
+
const offsetY =
|
413 |
+
(screenHeight - elementHeight * scale) / 2.5 -
|
414 |
+
originYValue * (1 - scale);
|
415 |
+
|
416 |
+
// Apply scale and offsets to the element
|
417 |
+
targetElement.style.transform = `translate(${offsetX}px, ${offsetY}px) scale(${scale})`;
|
418 |
+
|
419 |
+
// Update global variables
|
420 |
+
elemData[elemId].zoomLevel = scale;
|
421 |
+
elemData[elemId].panX = offsetX;
|
422 |
+
elemData[elemId].panY = offsetY;
|
423 |
+
|
424 |
+
fullScreenMode = false;
|
425 |
+
toggleOverlap("off");
|
426 |
+
}
|
427 |
+
|
428 |
+
/**
|
429 |
+
* This function fits the target element to the screen by calculating
|
430 |
+
* the required scale and offsets. It also updates the global variables
|
431 |
+
* zoomLevel, panX, and panY to reflect the new state.
|
432 |
+
*/
|
433 |
+
|
434 |
+
// Fullscreen mode
|
435 |
+
function fitToScreen() {
|
436 |
+
const canvas = gradioApp().querySelector(
|
437 |
+
`${elemId} canvas[key="interface"]`
|
438 |
+
);
|
439 |
+
|
440 |
+
if (!canvas) return;
|
441 |
+
|
442 |
+
if (canvas.offsetWidth > 862) {
|
443 |
+
targetElement.style.width = canvas.offsetWidth + "px";
|
444 |
+
}
|
445 |
+
|
446 |
+
if (fullScreenMode) {
|
447 |
+
resetZoom();
|
448 |
+
fullScreenMode = false;
|
449 |
+
return;
|
450 |
+
}
|
451 |
+
|
452 |
+
//Reset Zoom
|
453 |
+
targetElement.style.transform = `translate(${0}px, ${0}px) scale(${1})`;
|
454 |
+
|
455 |
+
// Get scrollbar width to right-align the image
|
456 |
+
const scrollbarWidth =
|
457 |
+
window.innerWidth - document.documentElement.clientWidth;
|
458 |
+
|
459 |
+
// Get element and screen dimensions
|
460 |
+
const elementWidth = targetElement.offsetWidth;
|
461 |
+
const elementHeight = targetElement.offsetHeight;
|
462 |
+
const screenWidth = window.innerWidth - scrollbarWidth;
|
463 |
+
const screenHeight = window.innerHeight;
|
464 |
+
|
465 |
+
// Get element's coordinates relative to the page
|
466 |
+
const elementRect = targetElement.getBoundingClientRect();
|
467 |
+
const elementY = elementRect.y;
|
468 |
+
const elementX = elementRect.x;
|
469 |
+
|
470 |
+
// Calculate scale and offsets
|
471 |
+
const scaleX = screenWidth / elementWidth;
|
472 |
+
const scaleY = screenHeight / elementHeight;
|
473 |
+
const scale = Math.min(scaleX, scaleY);
|
474 |
+
|
475 |
+
// Get the current transformOrigin
|
476 |
+
const computedStyle = window.getComputedStyle(targetElement);
|
477 |
+
const transformOrigin = computedStyle.transformOrigin;
|
478 |
+
const [originX, originY] = transformOrigin.split(" ");
|
479 |
+
const originXValue = parseFloat(originX);
|
480 |
+
const originYValue = parseFloat(originY);
|
481 |
+
|
482 |
+
// Calculate offsets with respect to the transformOrigin
|
483 |
+
const offsetX =
|
484 |
+
(screenWidth - elementWidth * scale) / 2 -
|
485 |
+
elementX -
|
486 |
+
originXValue * (1 - scale);
|
487 |
+
const offsetY =
|
488 |
+
(screenHeight - elementHeight * scale) / 2 -
|
489 |
+
elementY -
|
490 |
+
originYValue * (1 - scale);
|
491 |
+
|
492 |
+
// Apply scale and offsets to the element
|
493 |
+
targetElement.style.transform = `translate(${offsetX}px, ${offsetY}px) scale(${scale})`;
|
494 |
+
|
495 |
+
// Update global variables
|
496 |
+
elemData[elemId].zoomLevel = scale;
|
497 |
+
elemData[elemId].panX = offsetX;
|
498 |
+
elemData[elemId].panY = offsetY;
|
499 |
+
|
500 |
+
fullScreenMode = true;
|
501 |
+
toggleOverlap("on");
|
502 |
+
}
|
503 |
+
|
504 |
+
// Handle keydown events
|
505 |
+
function handleKeyDown(event) {
|
506 |
+
const hotkeyActions = {
|
507 |
+
[hotkeysConfig.canvas_hotkey_reset]: resetZoom,
|
508 |
+
[hotkeysConfig.canvas_hotkey_overlap]: toggleOverlap,
|
509 |
+
[hotkeysConfig.canvas_hotkey_fullscreen]: fitToScreen
|
510 |
+
};
|
511 |
+
|
512 |
+
const action = hotkeyActions[event.code];
|
513 |
+
if (action) {
|
514 |
+
event.preventDefault();
|
515 |
+
action(event);
|
516 |
+
}
|
517 |
+
}
|
518 |
+
|
519 |
+
// Get Mouse position
|
520 |
+
function getMousePosition(e) {
|
521 |
+
mouseX = e.offsetX;
|
522 |
+
mouseY = e.offsetY;
|
523 |
+
}
|
524 |
+
|
525 |
+
targetElement.addEventListener("mousemove", getMousePosition);
|
526 |
+
|
527 |
+
// Handle events only inside the targetElement
|
528 |
+
let isKeyDownHandlerAttached = false;
|
529 |
+
|
530 |
+
function handleMouseMove() {
|
531 |
+
if (!isKeyDownHandlerAttached) {
|
532 |
+
document.addEventListener("keydown", handleKeyDown);
|
533 |
+
isKeyDownHandlerAttached = true;
|
534 |
+
|
535 |
+
activeElement = elemId;
|
536 |
+
}
|
537 |
+
}
|
538 |
+
|
539 |
+
function handleMouseLeave() {
|
540 |
+
if (isKeyDownHandlerAttached) {
|
541 |
+
document.removeEventListener("keydown", handleKeyDown);
|
542 |
+
isKeyDownHandlerAttached = false;
|
543 |
+
|
544 |
+
activeElement = null;
|
545 |
+
}
|
546 |
+
}
|
547 |
+
|
548 |
+
// Add mouse event handlers
|
549 |
+
targetElement.addEventListener("mousemove", handleMouseMove);
|
550 |
+
targetElement.addEventListener("mouseleave", handleMouseLeave);
|
551 |
+
|
552 |
+
// Reset zoom when click on another tab
|
553 |
+
elements.img2imgTabs.addEventListener("click", resetZoom);
|
554 |
+
elements.img2imgTabs.addEventListener("click", () => {
|
555 |
+
// targetElement.style.width = "";
|
556 |
+
if (parseInt(targetElement.style.width) > 865) {
|
557 |
+
setTimeout(fitToElement, 0);
|
558 |
+
}
|
559 |
+
});
|
560 |
+
|
561 |
+
targetElement.addEventListener("wheel", e => {
|
562 |
+
// change zoom level
|
563 |
+
const operation = e.deltaY > 0 ? "-" : "+";
|
564 |
+
changeZoomLevel(operation, e);
|
565 |
+
|
566 |
+
// Handle brush size adjustment with ctrl key pressed
|
567 |
+
if (
|
568 |
+
(hotkeysConfig.canvas_swap_controls && e.shiftKey) ||
|
569 |
+
(!hotkeysConfig.canvas_swap_controls &&
|
570 |
+
(e.ctrlKey || e.metaKey))
|
571 |
+
) {
|
572 |
+
e.preventDefault();
|
573 |
+
|
574 |
+
// Increase or decrease brush size based on scroll direction
|
575 |
+
adjustBrushSize(elemId, e.deltaY);
|
576 |
+
}
|
577 |
+
});
|
578 |
+
|
579 |
+
// Handle the move event for pan functionality. Updates the panX and panY variables and applies the new transform to the target element.
|
580 |
+
function handleMoveKeyDown(e) {
|
581 |
+
if (e.code === hotkeysConfig.canvas_hotkey_move) {
|
582 |
+
if (!e.ctrlKey && !e.metaKey && isKeyDownHandlerAttached) {
|
583 |
+
e.preventDefault();
|
584 |
+
document.activeElement.blur();
|
585 |
+
isMoving = true;
|
586 |
+
}
|
587 |
+
}
|
588 |
+
}
|
589 |
+
|
590 |
+
function handleMoveKeyUp(e) {
|
591 |
+
if (e.code === hotkeysConfig.canvas_hotkey_move) {
|
592 |
+
isMoving = false;
|
593 |
+
}
|
594 |
+
}
|
595 |
+
|
596 |
+
document.addEventListener("keydown", handleMoveKeyDown);
|
597 |
+
document.addEventListener("keyup", handleMoveKeyUp);
|
598 |
+
|
599 |
+
// Detect zoom level and update the pan speed.
|
600 |
+
function updatePanPosition(movementX, movementY) {
|
601 |
+
let panSpeed = 2;
|
602 |
+
|
603 |
+
if (elemData[elemId].zoomLevel > 8) {
|
604 |
+
panSpeed = 3.5;
|
605 |
+
}
|
606 |
+
|
607 |
+
elemData[elemId].panX += movementX * panSpeed;
|
608 |
+
elemData[elemId].panY += movementY * panSpeed;
|
609 |
+
|
610 |
+
// Delayed redraw of an element
|
611 |
+
requestAnimationFrame(() => {
|
612 |
+
targetElement.style.transform = `translate(${elemData[elemId].panX}px, ${elemData[elemId].panY}px) scale(${elemData[elemId].zoomLevel})`;
|
613 |
+
toggleOverlap("on");
|
614 |
+
});
|
615 |
+
}
|
616 |
+
|
617 |
+
function handleMoveByKey(e) {
|
618 |
+
if (isMoving && elemId === activeElement) {
|
619 |
+
updatePanPosition(e.movementX, e.movementY);
|
620 |
+
targetElement.style.pointerEvents = "none";
|
621 |
+
} else {
|
622 |
+
targetElement.style.pointerEvents = "auto";
|
623 |
+
}
|
624 |
+
}
|
625 |
+
|
626 |
+
// Prevents sticking to the mouse
|
627 |
+
window.onblur = function() {
|
628 |
+
isMoving = false;
|
629 |
+
};
|
630 |
+
|
631 |
+
gradioApp().addEventListener("mousemove", handleMoveByKey);
|
632 |
+
}
|
633 |
+
|
634 |
+
applyZoomAndPan(elementIDs.sketch);
|
635 |
+
applyZoomAndPan(elementIDs.inpaint);
|
636 |
+
applyZoomAndPan(elementIDs.inpaintSketch);
|
637 |
+
|
638 |
+
// Make the function global so that other extensions can take advantage of this solution
|
639 |
+
window.applyZoomAndPan = applyZoomAndPan;
|
640 |
+
});
|
extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from modules import shared
|
2 |
+
|
3 |
+
shared.options_templates.update(shared.options_section(('canvas_hotkey', "Canvas Hotkeys"), {
|
4 |
+
"canvas_hotkey_move": shared.OptionInfo("F", "Moving the canvas"),
|
5 |
+
"canvas_hotkey_fullscreen": shared.OptionInfo("S", "Fullscreen Mode, maximizes the picture so that it fits into the screen and stretches it to its full width "),
|
6 |
+
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
|
7 |
+
"canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap ( Technical button, neededs for testing )"),
|
8 |
+
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
|
9 |
+
"canvas_swap_controls": shared.OptionInfo(False, "Swap hotkey combinations for Zoom and Adjust brush resize"),
|
10 |
+
}))
|
extensions-builtin/canvas-zoom-and-pan/style.css
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.tooltip-info {
|
2 |
+
position: absolute;
|
3 |
+
top: 10px;
|
4 |
+
left: 10px;
|
5 |
+
cursor: help;
|
6 |
+
background-color: rgba(0, 0, 0, 0.3);
|
7 |
+
width: 20px;
|
8 |
+
height: 20px;
|
9 |
+
border-radius: 50%;
|
10 |
+
display: flex;
|
11 |
+
align-items: center;
|
12 |
+
justify-content: center;
|
13 |
+
flex-direction: column;
|
14 |
+
|
15 |
+
z-index: 100;
|
16 |
+
}
|
17 |
+
|
18 |
+
.tooltip-info::after {
|
19 |
+
content: '';
|
20 |
+
display: block;
|
21 |
+
width: 2px;
|
22 |
+
height: 7px;
|
23 |
+
background-color: white;
|
24 |
+
margin-top: 2px;
|
25 |
+
}
|
26 |
+
|
27 |
+
.tooltip-info::before {
|
28 |
+
content: '';
|
29 |
+
display: block;
|
30 |
+
width: 2px;
|
31 |
+
height: 2px;
|
32 |
+
background-color: white;
|
33 |
+
}
|
34 |
+
|
35 |
+
.tooltip-content {
|
36 |
+
display: none;
|
37 |
+
background-color: #f9f9f9;
|
38 |
+
color: #333;
|
39 |
+
border: 1px solid #ddd;
|
40 |
+
padding: 15px;
|
41 |
+
position: absolute;
|
42 |
+
top: 40px;
|
43 |
+
left: 10px;
|
44 |
+
width: 250px;
|
45 |
+
font-size: 16px;
|
46 |
+
opacity: 0;
|
47 |
+
border-radius: 8px;
|
48 |
+
box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
|
49 |
+
|
50 |
+
z-index: 100;
|
51 |
+
}
|
52 |
+
|
53 |
+
.tooltip:hover .tooltip-content {
|
54 |
+
display: block;
|
55 |
+
animation: fadeIn 0.5s;
|
56 |
+
opacity: 1;
|
57 |
+
}
|
58 |
+
|
59 |
+
@keyframes fadeIn {
|
60 |
+
from {opacity: 0;}
|
61 |
+
to {opacity: 1;}
|
62 |
+
}
|
63 |
+
|
extensions-builtin/extra-options-section/scripts/extra_options_section.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from modules import scripts, shared, ui_components, ui_settings
|
3 |
+
from modules.ui_components import FormColumn
|
4 |
+
|
5 |
+
|
6 |
+
class ExtraOptionsSection(scripts.Script):
|
7 |
+
section = "extra_options"
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
self.comps = None
|
11 |
+
self.setting_names = None
|
12 |
+
|
13 |
+
def title(self):
|
14 |
+
return "Extra options"
|
15 |
+
|
16 |
+
def show(self, is_img2img):
|
17 |
+
return scripts.AlwaysVisible
|
18 |
+
|
19 |
+
def ui(self, is_img2img):
|
20 |
+
self.comps = []
|
21 |
+
self.setting_names = []
|
22 |
+
|
23 |
+
with gr.Blocks() as interface:
|
24 |
+
with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and shared.opts.extra_options else gr.Group(), gr.Row():
|
25 |
+
for setting_name in shared.opts.extra_options:
|
26 |
+
with FormColumn():
|
27 |
+
comp = ui_settings.create_setting_component(setting_name)
|
28 |
+
|
29 |
+
self.comps.append(comp)
|
30 |
+
self.setting_names.append(setting_name)
|
31 |
+
|
32 |
+
def get_settings_values():
|
33 |
+
return [ui_settings.get_value_for_setting(key) for key in self.setting_names]
|
34 |
+
|
35 |
+
interface.load(fn=get_settings_values, inputs=[], outputs=self.comps, queue=False, show_progress=False)
|
36 |
+
|
37 |
+
return self.comps
|
38 |
+
|
39 |
+
def before_process(self, p, *args):
|
40 |
+
for name, value in zip(self.setting_names, args):
|
41 |
+
if name not in p.override_settings:
|
42 |
+
p.override_settings[name] = value
|
43 |
+
|
44 |
+
|
45 |
+
shared.options_templates.update(shared.options_section(('ui', "User interface"), {
|
46 |
+
"extra_options": shared.OptionInfo([], "Options in main UI", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img/img2img interfaces").needs_restart(),
|
47 |
+
"extra_options_accordion": shared.OptionInfo(False, "Place options in main UI into an accordion")
|
48 |
+
}))
|
extensions-builtin/prompt-bracket-checker/javascript/prompt-bracket-checker.js
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Stable Diffusion WebUI - Bracket checker
|
2 |
+
// By Hingashi no Florin/Bwin4L & @akx
|
3 |
+
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
|
4 |
+
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
|
5 |
+
|
6 |
+
function checkBrackets(textArea, counterElt) {
|
7 |
+
var counts = {};
|
8 |
+
(textArea.value.match(/[(){}[\]]/g) || []).forEach(bracket => {
|
9 |
+
counts[bracket] = (counts[bracket] || 0) + 1;
|
10 |
+
});
|
11 |
+
var errors = [];
|
12 |
+
|
13 |
+
function checkPair(open, close, kind) {
|
14 |
+
if (counts[open] !== counts[close]) {
|
15 |
+
errors.push(
|
16 |
+
`${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.`
|
17 |
+
);
|
18 |
+
}
|
19 |
+
}
|
20 |
+
|
21 |
+
checkPair('(', ')', 'round brackets');
|
22 |
+
checkPair('[', ']', 'square brackets');
|
23 |
+
checkPair('{', '}', 'curly brackets');
|
24 |
+
counterElt.title = errors.join('\n');
|
25 |
+
counterElt.classList.toggle('error', errors.length !== 0);
|
26 |
+
}
|
27 |
+
|
28 |
+
function setupBracketChecking(id_prompt, id_counter) {
|
29 |
+
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
|
30 |
+
var counter = gradioApp().getElementById(id_counter);
|
31 |
+
|
32 |
+
if (textarea && counter) {
|
33 |
+
textarea.addEventListener("input", () => checkBrackets(textarea, counter));
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
onUiLoaded(function() {
|
38 |
+
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter');
|
39 |
+
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter');
|
40 |
+
setupBracketChecking('img2img_prompt', 'img2img_token_counter');
|
41 |
+
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter');
|
42 |
+
});
|
extensions-builtin/sd_theme_editor/install.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
import launch
|
extensions-builtin/sd_theme_editor/javascript/ui_theme.js
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
function hexToRgb(color) {
|
2 |
+
let hex = color[0] === "#" ? color.slice(1) : color;
|
3 |
+
let c;
|
4 |
+
|
5 |
+
// expand the short hex by doubling each character, fc0 -> ffcc00
|
6 |
+
if (hex.length !== 6) {
|
7 |
+
hex = (() => {
|
8 |
+
const result = [];
|
9 |
+
for (c of Array.from(hex)) {
|
10 |
+
result.push(`${c}${c}`);
|
11 |
+
}
|
12 |
+
return result;
|
13 |
+
})().join("");
|
14 |
+
}
|
15 |
+
const colorStr = hex.match(/#?(.{2})(.{2})(.{2})/).slice(1);
|
16 |
+
const rgb = colorStr.map((col) => parseInt(col, 16));
|
17 |
+
rgb.push(1);
|
18 |
+
return rgb;
|
19 |
+
}
|
20 |
+
|
21 |
+
function rgbToHsl(rgb) {
|
22 |
+
const r = rgb[0] / 255;
|
23 |
+
const g = rgb[1] / 255;
|
24 |
+
const b = rgb[2] / 255;
|
25 |
+
|
26 |
+
const max = Math.max(r, g, b);
|
27 |
+
const min = Math.min(r, g, b);
|
28 |
+
const diff = max - min;
|
29 |
+
const add = max + min;
|
30 |
+
|
31 |
+
const hue =
|
32 |
+
min === max
|
33 |
+
? 0
|
34 |
+
: r === max
|
35 |
+
? ((60 * (g - b)) / diff + 360) % 360
|
36 |
+
: g === max
|
37 |
+
? (60 * (b - r)) / diff + 120
|
38 |
+
: (60 * (r - g)) / diff + 240;
|
39 |
+
|
40 |
+
const lum = 0.5 * add;
|
41 |
+
|
42 |
+
const sat =
|
43 |
+
lum === 0 ? 0 : lum === 1 ? 1 : lum <= 0.5 ? diff / add : diff / (2 - add);
|
44 |
+
|
45 |
+
const h = Math.round(hue);
|
46 |
+
const s = Math.round(sat * 100);
|
47 |
+
const l = Math.round(lum * 100);
|
48 |
+
const a = rgb[3] || 1;
|
49 |
+
|
50 |
+
return [h, s, l, a];
|
51 |
+
}
|
52 |
+
|
53 |
+
function hexToHsl(color) {
|
54 |
+
const rgb = hexToRgb(color);
|
55 |
+
const hsl = rgbToHsl(rgb);
|
56 |
+
return "hsl(" + hsl[0] + "deg " + hsl[1] + "% " + hsl[2] + "%)";
|
57 |
+
}
|
58 |
+
|
59 |
+
function hslToHex(h, s, l) {
|
60 |
+
l /= 100;
|
61 |
+
const a = (s * Math.min(l, 1 - l)) / 100;
|
62 |
+
const f = (n) => {
|
63 |
+
const k = (n + h / 30) % 12;
|
64 |
+
const color = l - a * Math.max(Math.min(k - 3, 9 - k, 1), -1);
|
65 |
+
return Math.round(255 * Math.max(0, Math.min(color, 1)))
|
66 |
+
.toString(16)
|
67 |
+
.padStart(2, "0"); // convert to Hex and prefix "0" if needed
|
68 |
+
};
|
69 |
+
return `#${f(0)}${f(8)}${f(4)}`;
|
70 |
+
}
|
71 |
+
|
72 |
+
function hsl2rgb(h, s, l) {
|
73 |
+
let a = s * Math.min(l, 1 - l);
|
74 |
+
let f = (n, k = (n + h / 30) % 12) =>
|
75 |
+
l - a * Math.max(Math.min(k - 3, 9 - k, 1), -1);
|
76 |
+
return [f(0), f(8), f(4)];
|
77 |
+
}
|
78 |
+
|
79 |
+
function invertColor(hex) {
|
80 |
+
if (hex.indexOf("#") === 0) {
|
81 |
+
hex = hex.slice(1);
|
82 |
+
}
|
83 |
+
// convert 3-digit hex to 6-digits.
|
84 |
+
if (hex.length === 3) {
|
85 |
+
hex = hex[0] + hex[0] + hex[1] + hex[1] + hex[2] + hex[2];
|
86 |
+
}
|
87 |
+
if (hex.length !== 6) {
|
88 |
+
throw new Error("Invalid HEX color.");
|
89 |
+
}
|
90 |
+
// invert color components
|
91 |
+
var r = (255 - parseInt(hex.slice(0, 2), 16)).toString(16),
|
92 |
+
g = (255 - parseInt(hex.slice(2, 4), 16)).toString(16),
|
93 |
+
b = (255 - parseInt(hex.slice(4, 6), 16)).toString(16);
|
94 |
+
// pad each with zeros and return
|
95 |
+
return "#" + padZero(r) + padZero(g) + padZero(b);
|
96 |
+
}
|
97 |
+
|
98 |
+
function padZero(str, len) {
|
99 |
+
len = len || 2;
|
100 |
+
var zeros = new Array(len).join("0");
|
101 |
+
return (zeros + str).slice(-len);
|
102 |
+
}
|
103 |
+
|
104 |
+
function getValsWrappedIn(str, c1, c2) {
|
105 |
+
var rg = new RegExp("(?<=\\" + c1 + ")(.*?)(?=\\" + c2 + ")", "g");
|
106 |
+
return str.match(rg);
|
107 |
+
}
|
108 |
+
|
109 |
+
let styleobj = {};
|
110 |
+
let hslobj = {};
|
111 |
+
let isColorsInv;
|
112 |
+
|
113 |
+
const toHSLArray = (hslStr) => hslStr.match(/\d+/g).map(Number);
|
114 |
+
|
115 |
+
function offsetColorsHSV(ohsl) {
|
116 |
+
let inner_styles = "";
|
117 |
+
|
118 |
+
for (const key in styleobj) {
|
119 |
+
let keyVal = styleobj[key];
|
120 |
+
|
121 |
+
if (keyVal.indexOf("#") != -1 || keyVal.indexOf("hsl") != -1) {
|
122 |
+
let colcomp = gradioApp().querySelector("#" + key + " input");
|
123 |
+
if (colcomp) {
|
124 |
+
let hsl;
|
125 |
+
|
126 |
+
if (keyVal.indexOf("#") != -1) {
|
127 |
+
keyVal = keyVal.replace(/\s+/g, "");
|
128 |
+
//inv ? keyVal = invertColor(keyVal) : 0;
|
129 |
+
if (isColorsInv) {
|
130 |
+
keyVal = invertColor(keyVal);
|
131 |
+
styleobj[key] = keyVal;
|
132 |
+
}
|
133 |
+
hsl = rgbToHsl(hexToRgb(keyVal));
|
134 |
+
} else {
|
135 |
+
if (isColorsInv) {
|
136 |
+
let c = toHSLArray(keyVal);
|
137 |
+
let hex = hslToHex(c[0], c[1], c[2]);
|
138 |
+
keyVal = invertColor(hex);
|
139 |
+
styleobj[key] = keyVal;
|
140 |
+
hsl = rgbToHsl(hexToRgb(keyVal));
|
141 |
+
} else {
|
142 |
+
hsl = toHSLArray(keyVal);
|
143 |
+
}
|
144 |
+
}
|
145 |
+
|
146 |
+
let h = (parseInt(hsl[0]) + parseInt(ohsl[0])) % 360;
|
147 |
+
let s = parseInt(hsl[1]) + parseInt(ohsl[1]);
|
148 |
+
let l = parseInt(hsl[2]) + parseInt(ohsl[2]);
|
149 |
+
|
150 |
+
let hex = hslToHex(
|
151 |
+
h,
|
152 |
+
Math.min(Math.max(s, 0), 100),
|
153 |
+
Math.min(Math.max(l, 0), 100)
|
154 |
+
);
|
155 |
+
|
156 |
+
colcomp.value = hex;
|
157 |
+
|
158 |
+
hslobj[key] = "hsl(" + h + "deg " + s + "% " + l + "%)";
|
159 |
+
inner_styles += key + ":" + hslobj[key] + ";";
|
160 |
+
}
|
161 |
+
} else {
|
162 |
+
inner_styles += key + ":" + styleobj[key] + ";";
|
163 |
+
}
|
164 |
+
}
|
165 |
+
|
166 |
+
isColorsInv = false;
|
167 |
+
|
168 |
+
const preview_styles = gradioApp().querySelector("#preview-styles");
|
169 |
+
preview_styles.innerHTML = ":root {" + inner_styles + "}";
|
170 |
+
preview_styles.innerHTML +=
|
171 |
+
"@media only screen and (max-width: 860px) {:root{--ae-outside-gap-size: var(--ae-mobile-outside-gap-size);--ae-inside-padding-size: var(--ae-mobile-inside-padding-size);}}";
|
172 |
+
|
173 |
+
const vars_textarea = gradioApp().querySelector("#theme_vars textarea");
|
174 |
+
vars_textarea.value = inner_styles;
|
175 |
+
|
176 |
+
const inputEvent = new Event("input");
|
177 |
+
Object.defineProperty(inputEvent, "target", { value: vars_textarea });
|
178 |
+
vars_textarea.dispatchEvent(inputEvent);
|
179 |
+
}
|
180 |
+
|
181 |
+
function updateTheme(vars) {
|
182 |
+
let inner_styles = "";
|
183 |
+
|
184 |
+
for (let i = 0; i < vars.length - 1; i++) {
|
185 |
+
let key = vars[i].split(":");
|
186 |
+
let id = key[0].replace(/\s+/g, "");
|
187 |
+
let val = key[1].trim();
|
188 |
+
|
189 |
+
styleobj[id] = val;
|
190 |
+
inner_styles += id + ":" + val + ";";
|
191 |
+
|
192 |
+
gradioApp()
|
193 |
+
.querySelectorAll("#" + id + " input")
|
194 |
+
.forEach((elem) => {
|
195 |
+
if (val.indexOf("hsl") != -1) {
|
196 |
+
let hsl = toHSLArray(val);
|
197 |
+
let hex = hslToHex(hsl[0], hsl[1], hsl[2]);
|
198 |
+
elem.value = hex;
|
199 |
+
} else {
|
200 |
+
elem.value = val.split("px")[0];
|
201 |
+
}
|
202 |
+
});
|
203 |
+
}
|
204 |
+
|
205 |
+
const preview_styles = gradioApp().querySelector("#preview-styles");
|
206 |
+
|
207 |
+
if (preview_styles) {
|
208 |
+
preview_styles.innerHTML = ":root {" + inner_styles + "}";
|
209 |
+
preview_styles.innerHTML +=
|
210 |
+
"@media only screen and (max-width: 860px) {:root{--ae-outside-gap-size: var(--ae-mobile-outside-gap-size);--ae-inside-padding-size: var(--ae-mobile-inside-padding-size);}}";
|
211 |
+
} else {
|
212 |
+
const r = gradioApp();
|
213 |
+
const style = document.createElement("style");
|
214 |
+
style.id = "preview-styles";
|
215 |
+
style.innerHTML = ":root {" + inner_styles + "}";
|
216 |
+
style.innerHTML +=
|
217 |
+
"@media only screen and (max-width: 860px) {:root{--ae-outside-gap-size: var(--ae-mobile-outside-gap-size);--ae-inside-padding-size: var(--ae-mobile-inside-padding-size);}}";
|
218 |
+
r.appendChild(style);
|
219 |
+
}
|
220 |
+
|
221 |
+
const vars_textarea = gradioApp().querySelector("#theme_vars textarea");
|
222 |
+
const css_textarea = gradioApp().querySelector("#theme_css textarea");
|
223 |
+
|
224 |
+
vars_textarea.value = inner_styles;
|
225 |
+
css_textarea.value = css_textarea.value;
|
226 |
+
|
227 |
+
//console.log(Object);
|
228 |
+
|
229 |
+
const vEvent = new Event("input");
|
230 |
+
const cEvent = new Event("input");
|
231 |
+
Object.defineProperty(vEvent, "target", { value: vars_textarea });
|
232 |
+
Object.defineProperty(cEvent, "target", { value: css_textarea });
|
233 |
+
vars_textarea.dispatchEvent(vEvent);
|
234 |
+
css_textarea.dispatchEvent(cEvent);
|
235 |
+
}
|
236 |
+
|
237 |
+
function applyTheme() {
|
238 |
+
console.log("apply");
|
239 |
+
}
|
240 |
+
|
241 |
+
function initTheme() {
|
242 |
+
const current_style = gradioApp().querySelector(".gradio-container > style");
|
243 |
+
//console.log(current_style);
|
244 |
+
//const head = document.head;
|
245 |
+
//head.appendChild(current_style);
|
246 |
+
|
247 |
+
const css_styles = current_style.innerHTML.split(
|
248 |
+
"/*BREAKPOINT_CSS_CONTENT*/"
|
249 |
+
);
|
250 |
+
let init_css_vars = css_styles[0].split("}")[0].split("{")[1];
|
251 |
+
init_css_vars = init_css_vars.replace(/\n|\r/g, "");
|
252 |
+
|
253 |
+
let init_vars = init_css_vars.split(";");
|
254 |
+
let vars = init_vars;
|
255 |
+
|
256 |
+
//console.log(vars);
|
257 |
+
|
258 |
+
const vars_textarea = gradioApp().querySelector("#theme_vars textarea");
|
259 |
+
const css_textarea = gradioApp().querySelector("#theme_css textarea");
|
260 |
+
//const result_textarea = gradioApp().querySelector('#theme_result textarea');
|
261 |
+
vars_textarea.value = init_css_vars;
|
262 |
+
css_textarea.value =
|
263 |
+
"/*BREAKPOINT_CSS_CONTENT*/" + css_styles[1] + "/*BREAKPOINT_CSS_CONTENT*/";
|
264 |
+
|
265 |
+
updateTheme(vars);
|
266 |
+
|
267 |
+
//vars_textarea.addEventListener("change", function(e) {
|
268 |
+
//e.preventDefault();
|
269 |
+
//e.stopPropagation();
|
270 |
+
//vars = vars_textarea.value.split(";");
|
271 |
+
//console.log(e);
|
272 |
+
//updateTheme(vars);
|
273 |
+
|
274 |
+
//})
|
275 |
+
|
276 |
+
const preview_styles = gradioApp().querySelector("#preview-styles");
|
277 |
+
let intervalChange;
|
278 |
+
|
279 |
+
gradioApp()
|
280 |
+
.querySelectorAll("#ui_theme_settings input")
|
281 |
+
.forEach((elem) => {
|
282 |
+
elem.addEventListener("input", function (e) {
|
283 |
+
let celem = e.currentTarget;
|
284 |
+
let val = e.currentTarget.value;
|
285 |
+
let curr_val;
|
286 |
+
|
287 |
+
switch (e.currentTarget.type) {
|
288 |
+
case "range":
|
289 |
+
celem = celem.parentElement;
|
290 |
+
val = e.currentTarget.value + "px";
|
291 |
+
break;
|
292 |
+
case "color":
|
293 |
+
celem = celem.parentElement.parentElement;
|
294 |
+
val = e.currentTarget.value;
|
295 |
+
break;
|
296 |
+
case "number":
|
297 |
+
celem = celem.parentElement.parentElement.parentElement;
|
298 |
+
val = e.currentTarget.value + "px";
|
299 |
+
break;
|
300 |
+
}
|
301 |
+
|
302 |
+
styleobj[celem.id] = val;
|
303 |
+
|
304 |
+
//console.log(styleobj);
|
305 |
+
|
306 |
+
if (intervalChange != null) clearInterval(intervalChange);
|
307 |
+
intervalChange = setTimeout(() => {
|
308 |
+
let inner_styles = "";
|
309 |
+
|
310 |
+
for (const key in styleobj) {
|
311 |
+
inner_styles += key + ":" + styleobj[key] + ";";
|
312 |
+
}
|
313 |
+
|
314 |
+
vars = inner_styles.split(";");
|
315 |
+
preview_styles.innerHTML = ":root {" + inner_styles + "}";
|
316 |
+
preview_styles.innerHTML +=
|
317 |
+
"@media only screen and (max-width: 860px) {:root{--ae-outside-gap-size: var(--ae-mobile-outside-gap-size);--ae-inside-padding-size: var(--ae-mobile-inside-padding-size);}}";
|
318 |
+
|
319 |
+
vars_textarea.value = inner_styles;
|
320 |
+
const vEvent = new Event("input");
|
321 |
+
Object.defineProperty(vEvent, "target", { value: vars_textarea });
|
322 |
+
vars_textarea.dispatchEvent(vEvent);
|
323 |
+
|
324 |
+
offsetColorsHSV(hsloffset);
|
325 |
+
}, 1000);
|
326 |
+
});
|
327 |
+
});
|
328 |
+
|
329 |
+
const reset_btn = gradioApp().getElementById("theme_reset_btn");
|
330 |
+
reset_btn.addEventListener("click", function (e) {
|
331 |
+
e.preventDefault();
|
332 |
+
e.stopPropagation();
|
333 |
+
gradioApp()
|
334 |
+
.querySelectorAll("#ui_theme_hsv input")
|
335 |
+
.forEach((elem) => {
|
336 |
+
elem.value = 0;
|
337 |
+
});
|
338 |
+
hsloffset = [0, 0, 0];
|
339 |
+
updateTheme(init_vars);
|
340 |
+
});
|
341 |
+
|
342 |
+
/*
|
343 |
+
const apply_btn = gradioApp().getElementById('theme_apply_btn');
|
344 |
+
apply_btn.addEventListener("click", function(e) {
|
345 |
+
e.preventDefault();
|
346 |
+
e.stopPropagation();
|
347 |
+
init_css_vars = vars_textarea.value.replace(/\n|\r/g, "");
|
348 |
+
vars_textarea.value = init_css_vars;
|
349 |
+
|
350 |
+
init_vars = init_css_vars.split(";");
|
351 |
+
vars = init_vars;
|
352 |
+
updateTheme(vars);
|
353 |
+
})
|
354 |
+
*/
|
355 |
+
|
356 |
+
let intervalCheck;
|
357 |
+
function dropDownOnChange() {
|
358 |
+
if (init_css_vars != vars_textarea.value) {
|
359 |
+
clearInterval(intervalCheck);
|
360 |
+
init_css_vars = vars_textarea.value.replace(/\n|\r/g, "");
|
361 |
+
vars_textarea.value = init_css_vars;
|
362 |
+
init_vars = init_css_vars.split(";");
|
363 |
+
vars = init_vars;
|
364 |
+
updateTheme(vars);
|
365 |
+
}
|
366 |
+
}
|
367 |
+
|
368 |
+
const drop_down = gradioApp().querySelector("#themes_drop_down");
|
369 |
+
drop_down.addEventListener("click", function (e) {
|
370 |
+
if (intervalCheck != null) clearInterval(intervalCheck);
|
371 |
+
intervalCheck = setInterval(dropDownOnChange, 100);
|
372 |
+
//console.log("ok");
|
373 |
+
});
|
374 |
+
|
375 |
+
let hsloffset = [0, 0, 0];
|
376 |
+
|
377 |
+
const hue = gradioApp()
|
378 |
+
.querySelectorAll("#theme_hue input")
|
379 |
+
.forEach((elem) => {
|
380 |
+
elem.addEventListener("change", function (e) {
|
381 |
+
e.preventDefault();
|
382 |
+
e.stopPropagation();
|
383 |
+
hsloffset[0] = e.currentTarget.value;
|
384 |
+
offsetColorsHSV(hsloffset);
|
385 |
+
});
|
386 |
+
});
|
387 |
+
|
388 |
+
const sat = gradioApp()
|
389 |
+
.querySelectorAll("#theme_sat input")
|
390 |
+
.forEach((elem) => {
|
391 |
+
elem.addEventListener("change", function (e) {
|
392 |
+
e.preventDefault();
|
393 |
+
e.stopPropagation();
|
394 |
+
hsloffset[1] = e.currentTarget.value;
|
395 |
+
offsetColorsHSV(hsloffset);
|
396 |
+
});
|
397 |
+
});
|
398 |
+
|
399 |
+
const brt = gradioApp()
|
400 |
+
.querySelectorAll("#theme_brt input")
|
401 |
+
.forEach((elem) => {
|
402 |
+
elem.addEventListener("change", function (e) {
|
403 |
+
e.preventDefault();
|
404 |
+
e.stopPropagation();
|
405 |
+
hsloffset[2] = e.currentTarget.value;
|
406 |
+
offsetColorsHSV(hsloffset);
|
407 |
+
});
|
408 |
+
});
|
409 |
+
|
410 |
+
const inv_btn = gradioApp().getElementById("theme_invert_btn");
|
411 |
+
inv_btn.addEventListener("click", function (e) {
|
412 |
+
e.preventDefault();
|
413 |
+
e.stopPropagation();
|
414 |
+
isColorsInv = !isColorsInv;
|
415 |
+
offsetColorsHSV(hsloffset);
|
416 |
+
});
|
417 |
+
}
|
418 |
+
|
419 |
+
function observeGradioApp() {
|
420 |
+
const observer = new MutationObserver(() => {
|
421 |
+
const block = gradioApp().getElementById("tab_ui_theme");
|
422 |
+
if (block) {
|
423 |
+
observer.disconnect();
|
424 |
+
|
425 |
+
setTimeout(() => {
|
426 |
+
initTheme();
|
427 |
+
}, "500");
|
428 |
+
}
|
429 |
+
});
|
430 |
+
observer.observe(gradioApp(), { childList: true, subtree: true });
|
431 |
+
}
|
432 |
+
|
433 |
+
document.addEventListener("DOMContentLoaded", () => {
|
434 |
+
observeGradioApp();
|
435 |
+
});
|
extensions-builtin/sd_theme_editor/scripts/ui_theme.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from pathlib import Path
|
4 |
+
import gradio as gr
|
5 |
+
import modules.scripts as scripts
|
6 |
+
from modules import script_callbacks, shared
|
7 |
+
|
8 |
+
basedir = scripts.basedir()
|
9 |
+
webui_dir = Path(basedir).parents[1]
|
10 |
+
|
11 |
+
themes_folder = os.path.join(basedir, "themes")
|
12 |
+
javascript_folder = os.path.join(basedir, "javascript")
|
13 |
+
webui_style_path = os.path.join(webui_dir, "style.css")
|
14 |
+
|
15 |
+
def get_files(folder, file_filter=[], file_list=[], split=False):
|
16 |
+
file_list = [file_name if not split else os.path.splitext(file_name)[0] for file_name in os.listdir(folder) if os.path.isfile(os.path.join(folder, file_name)) and file_name not in file_filter]
|
17 |
+
return file_list
|
18 |
+
|
19 |
+
|
20 |
+
def on_ui_tabs():
|
21 |
+
|
22 |
+
with gr.Blocks(analytics_enabled=False) as ui_theme:
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Column():
|
25 |
+
with gr.Row():
|
26 |
+
themes_dropdown = gr.Dropdown(label="Themes", elem_id="themes_drop_down", interactive=True, choices=get_files(themes_folder,[".css, .txt"]), type="value")
|
27 |
+
save_as_filename = gr.Text(label="Save / Save as")
|
28 |
+
with gr.Row():
|
29 |
+
reset_button = gr.Button(elem_id="theme_reset_btn", value="Reset", variant="primary")
|
30 |
+
#apply_button = gr.Button(elem_id="theme_apply_btn", value="Apply", variant="primary")
|
31 |
+
save_button = gr.Button(value="Save", variant="primary")
|
32 |
+
#delete_button = gr.Button(value="Delete", variant="primary")
|
33 |
+
|
34 |
+
#with gr.Accordion(label="Debug View", open=True):
|
35 |
+
with gr.Row(elem_id="theme_hidden"):
|
36 |
+
vars_text = gr.Textbox(label="Vars", elem_id="theme_vars", show_label=True, lines=7, interactive=False, visible=True)
|
37 |
+
css_text = gr.Textbox(label="Css", elem_id="theme_css", show_label=True, lines=7, interactive=False, visible=True)
|
38 |
+
#result_text = gr.Text(elem_id="theme_result", interactive=False, visible=False)
|
39 |
+
with gr.Column(elem_id="theme_overflow_container"):
|
40 |
+
with gr.Accordion(label="Theme Color adjustments", open=True):
|
41 |
+
with gr.Row():
|
42 |
+
with gr.Column(scale=6, elem_id="ui_theme_hsv"):
|
43 |
+
gr.Slider(elem_id="theme_hue", label='Hue', minimum=0, maximum=360, step=1)
|
44 |
+
gr.Slider(elem_id="theme_sat", label='Saturation', minimum=-100, maximum=100, step=1, value=0, interactive=True)
|
45 |
+
gr.Slider(elem_id="theme_brt", label='Lightness', minimum=-50, maximum=50, step=1, value=0, interactive=True)
|
46 |
+
|
47 |
+
gr.Button(elem_id="theme_invert_btn", value="Invert", variant="primary")
|
48 |
+
|
49 |
+
|
50 |
+
with gr.Row(elem_id="ui_theme_settings"):
|
51 |
+
with gr.Column():
|
52 |
+
with gr.Column():
|
53 |
+
with gr.Accordion(label="Main", open=True):
|
54 |
+
gr.ColorPicker(elem_id="--ae-main-bg-color", interactive=True, label="Background color")
|
55 |
+
gr.ColorPicker(elem_id="--ae-primary-color", label="Primary color")
|
56 |
+
|
57 |
+
with gr.Accordion(label="Focus", open=True):
|
58 |
+
gr.ColorPicker(elem_id="--ae-textarea-focus-color", label="Textarea color")
|
59 |
+
gr.ColorPicker(elem_id="--ae-input-focus-color", label="Input color")
|
60 |
+
|
61 |
+
with gr.Accordion(label="Spacing", open=True):
|
62 |
+
gr.Slider(elem_id="--ae-outside-gap-size", label='Gap size', minimum=1, maximum=16, step=1, interactive=True)
|
63 |
+
gr.Slider(elem_id="--ae-inside-padding-size", label='Padding size', minimum=1, maximum=16, step=1, interactive=True)
|
64 |
+
|
65 |
+
with gr.Accordion(label="Spacing (Mobile)", open=True):
|
66 |
+
gr.Slider(elem_id="--ae-mobile-outside-gap-size", label='Mobile Gap size', minimum=1, maximum=16, step=1, interactive=True)
|
67 |
+
gr.Slider(elem_id="--ae-mobile-inside-padding-size", label='Mobile Padding size', minimum=1, maximum=16, step=1, interactive=True)
|
68 |
+
|
69 |
+
with gr.Accordion(label="Panel", open=True):
|
70 |
+
gr.ColorPicker(elem_id="--ae-label-color", label="Label color")
|
71 |
+
gr.ColorPicker(elem_id="--ae-frame-bg-color", label="Frame Background color")
|
72 |
+
gr.ColorPicker(elem_id="--ae-panel-bg-color", label="Background color")
|
73 |
+
gr.ColorPicker(elem_id="--ae-panel-border-color", label="Border color")
|
74 |
+
gr.Slider(elem_id="--ae-panel-border-radius", label='Border radius', minimum=0, maximum=16, step=1)
|
75 |
+
|
76 |
+
gr.ColorPicker(elem_id="--ae-input-color", label="Input text color")
|
77 |
+
gr.ColorPicker(elem_id="--ae-input-bg-color", label="Input background color")
|
78 |
+
gr.ColorPicker(elem_id="--ae-input-border-color", label="Input border color")
|
79 |
+
with gr.Column():
|
80 |
+
with gr.Row(elem_id="theme_sub-panel"):
|
81 |
+
|
82 |
+
with gr.Accordion(label="SubPanel", open=True):
|
83 |
+
gr.ColorPicker(elem_id="--ae-subgroup-bg-color", label="Subgoup background color")
|
84 |
+
#gr.ColorPicker(elem_id="--ae-subgroup-label-color", label="Label color", value="#000000")
|
85 |
+
gr.ColorPicker(elem_id="--ae-subpanel-bg-color", label="Background color")
|
86 |
+
gr.ColorPicker(elem_id="--ae-subpanel-border-color", label="Border color")
|
87 |
+
gr.Slider(elem_id="--ae-subpanel-border-radius", label='Border radius', minimum=0, maximum=16, step=1)
|
88 |
+
|
89 |
+
gr.ColorPicker(elem_id="--ae-subgroup-input-color", label="Input text color")
|
90 |
+
gr.ColorPicker(elem_id="--ae-subgroup-input-bg-color", label="Input background color")
|
91 |
+
gr.ColorPicker(elem_id="--ae-subgroup-input-border-color", label="Input border color")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column():
|
95 |
+
with gr.Accordion(label="Navigation menu", open=True):
|
96 |
+
gr.ColorPicker(elem_id="--ae-nav-bg-color", label="Background color")
|
97 |
+
gr.ColorPicker(elem_id="--ae-nav-color", label="Text color")
|
98 |
+
gr.ColorPicker(elem_id="--ae-nav-hover-color", label="Hover color")
|
99 |
+
|
100 |
+
with gr.Accordion(label="Icon", open=True):
|
101 |
+
gr.ColorPicker(elem_id="--ae-icon-color", label="Color")
|
102 |
+
gr.ColorPicker(elem_id="--ae-icon-hover-color", label="Hover color")
|
103 |
+
|
104 |
+
with gr.Accordion(label="Other", open=True):
|
105 |
+
gr.ColorPicker(elem_id="--ae-text-color", label="Text color")
|
106 |
+
gr.ColorPicker(elem_id="--ae-placeholder-color", label="Placeholder color")
|
107 |
+
gr.ColorPicker(elem_id="--ae-cancel-color", label="Cancel/Interrupt color")
|
108 |
+
|
109 |
+
with gr.Accordion(label="Modal", open=True):
|
110 |
+
gr.ColorPicker(elem_id="--ae-modal-bg-color", label="Background color")
|
111 |
+
gr.ColorPicker(elem_id="--ae-modal-icon-color", label="Icon color")
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
def save_theme( vars_text, css_text, filename):
|
116 |
+
style_data= ":root{" + vars_text + "}" + css_text
|
117 |
+
with open(os.path.join(themes_folder, f"{filename}.css"), 'w', encoding="utf-8") as file:
|
118 |
+
file.write(vars_text)
|
119 |
+
file.close()
|
120 |
+
with open(webui_style_path, 'w', encoding="utf-8") as file:
|
121 |
+
file.write(style_data)
|
122 |
+
file.close()
|
123 |
+
themes_dropdown.choices=get_files(themes_folder,[".css, .txt"])
|
124 |
+
return gr.update(choices=themes_dropdown.choices, value=f"{filename}.css")
|
125 |
+
|
126 |
+
def open_theme(filename, css_text):
|
127 |
+
with open(os.path.join(themes_folder, f"{filename}"), 'r') as file:
|
128 |
+
vars_text=file.read()
|
129 |
+
no_ext=filename.rsplit('.', 1)[0]
|
130 |
+
#save_theme( vars_text, css_text, no_ext)
|
131 |
+
# shared.state.interrupt()
|
132 |
+
# shared.state.need_restart = True
|
133 |
+
return [vars_text, no_ext]
|
134 |
+
|
135 |
+
# def delete_theme(filename):
|
136 |
+
# try:
|
137 |
+
# os.remove(os.path.join(themes_folder, filename))
|
138 |
+
# except FileNotFoundError:
|
139 |
+
# pass
|
140 |
+
|
141 |
+
# delete_button.click(
|
142 |
+
# fn = lambda: delete_theme()
|
143 |
+
# )
|
144 |
+
|
145 |
+
save_button.click(
|
146 |
+
fn=save_theme,
|
147 |
+
inputs=[vars_text, css_text, save_as_filename],
|
148 |
+
outputs=themes_dropdown
|
149 |
+
)
|
150 |
+
|
151 |
+
themes_dropdown.change(
|
152 |
+
fn=open_theme,
|
153 |
+
#_js = "applyTheme",
|
154 |
+
inputs=[themes_dropdown, css_text],
|
155 |
+
outputs=[vars_text, save_as_filename]
|
156 |
+
)
|
157 |
+
|
158 |
+
# apply_button.click(
|
159 |
+
# fn=None,
|
160 |
+
# _js = "applyTheme"
|
161 |
+
# )
|
162 |
+
|
163 |
+
# vars_text.change(
|
164 |
+
# fn=None,
|
165 |
+
# _js = "applyTheme",
|
166 |
+
# inputs=[],
|
167 |
+
# outputs=[vars_text, css_text]
|
168 |
+
# )
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
return (ui_theme, 'Theme', 'ui_theme'),
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
script_callbacks.on_ui_tabs(on_ui_tabs)
|
extensions-builtin/sd_theme_editor/style.css
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#theme_menu {
|
2 |
+
z-index: 9999;
|
3 |
+
background-color: var(--ae-input-bg-color);
|
4 |
+
position: relative;
|
5 |
+
width: 38px;
|
6 |
+
height: 38px;
|
7 |
+
border-radius: 100%;
|
8 |
+
cursor: pointer;
|
9 |
+
min-width: unset;
|
10 |
+
max-width: 38px;
|
11 |
+
align-self: center;
|
12 |
+
}
|
13 |
+
|
14 |
+
#theme_menu::before {
|
15 |
+
content: " ";
|
16 |
+
display: inline-block;
|
17 |
+
-webkit-mask-size: cover;
|
18 |
+
mask-size: cover;
|
19 |
+
background-color: var(--ae-icon-color);
|
20 |
+
width: var(--ae-icon-size);
|
21 |
+
height: var(--ae-icon-size);
|
22 |
+
-webkit-mask: url(./file=html/svg/contrast-drop-2-line.svg) no-repeat 50% 50%;
|
23 |
+
mask: url(./file=html/svg/contrast-drop-2-line.svg) no-repeat 50% 50%;
|
24 |
+
cursor: pointer;
|
25 |
+
position: relative;
|
26 |
+
left: 50%;
|
27 |
+
top: 50%;
|
28 |
+
transform: translate(-50%, -50%) scale(1);
|
29 |
+
}
|
30 |
+
|
31 |
+
#theme_menu.fixed,
|
32 |
+
#theme_menu:hover {
|
33 |
+
background-color: var(--ae-icon-color);
|
34 |
+
}
|
35 |
+
|
36 |
+
#theme_menu.fixed::before,
|
37 |
+
#theme_menu:hover::before {
|
38 |
+
background-color: var(--ae-icon-hover-color);
|
39 |
+
}
|
40 |
+
|
41 |
+
#theme_overflow_container {
|
42 |
+
overflow-y: auto;
|
43 |
+
height: calc(
|
44 |
+
100vh - var(--ae-top-header-height) - (var(--ae-outside-gap-size) * 2) -
|
45 |
+
(var(--ae-inside-padding-size) * 4) - 96px
|
46 |
+
);
|
47 |
+
overflow-x: hidden;
|
48 |
+
}
|
49 |
+
|
50 |
+
#tab_ui_theme.open {
|
51 |
+
transform: translateX(0);
|
52 |
+
box-shadow: rgba(0, 0, 0, 0.4) -30px 0 30px -30px;
|
53 |
+
}
|
54 |
+
|
55 |
+
#tab_ui_theme.aside {
|
56 |
+
display: block !important;
|
57 |
+
}
|
58 |
+
|
59 |
+
#tab_ui_theme.aside {
|
60 |
+
position: fixed;
|
61 |
+
top: var(--ae-top-header-height);
|
62 |
+
width: 90%;
|
63 |
+
right: 0;
|
64 |
+
height: calc(100% - var(--ae-top-header-height));
|
65 |
+
max-width: 480px;
|
66 |
+
z-index: 9999;
|
67 |
+
transform: translateX(100%);
|
68 |
+
transition: all 0.25s ease 0s;
|
69 |
+
box-shadow: rgba(0, 0, 0, 0) -30px 0 30px -30px;
|
70 |
+
padding: calc(1rem - var(--ae-outside-gap-size));
|
71 |
+
background-color: var(--ae-main-bg-color) !important;
|
72 |
+
}
|
73 |
+
#tab_ui_theme.aside.open {
|
74 |
+
transform: translateX(0);
|
75 |
+
box-shadow: rgba(0, 0, 0, 0.4) -30px 0 30px -30px;
|
76 |
+
}
|
77 |
+
|
78 |
+
#theme_hidden,
|
79 |
+
#setting_ui_header_tabs .theme,
|
80 |
+
#setting_ui_hidden_tabs .theme {
|
81 |
+
display: none !important;
|
82 |
+
}
|
83 |
+
|
84 |
+
#tab_ui_theme [id*="color"] label {
|
85 |
+
display: flex;
|
86 |
+
align-items: center;
|
87 |
+
pointer-events: none;
|
88 |
+
}
|
89 |
+
#tab_ui_theme [id*="color"] label span {
|
90 |
+
min-width: 50% !important;
|
91 |
+
}
|
92 |
+
#tab_ui_theme [id*="color"] label input {
|
93 |
+
flex-grow: 1;
|
94 |
+
pointer-events: all;
|
95 |
+
cursor: pointer;
|
96 |
+
}
|
97 |
+
|
98 |
+
#settings_ui_theme > div > div {
|
99 |
+
flex-direction: row;
|
100 |
+
flex-wrap: wrap;
|
101 |
+
}
|
102 |
+
#settings_ui_theme > div > div > div {
|
103 |
+
max-width: 30%;
|
104 |
+
}
|
105 |
+
|
106 |
+
#tab_ui_theme > div {
|
107 |
+
padding: 16px !important;
|
108 |
+
padding-top: 0 !important;
|
109 |
+
}
|
110 |
+
|
111 |
+
#ui_theme_hsv + button {
|
112 |
+
min-width: unset;
|
113 |
+
}
|
extensions-builtin/sd_theme_editor/themes/Golde.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(99deg 11% 8%);--ae-primary-color:hsl(44deg 63% 55%);--ae-input-bg-color:hsl(106deg 8% 12%);--ae-input-border-color:hsl(104deg 9% 32%);--ae-panel-bg-color:hsl(104deg 9% 20%);--ae-panel-border-color:hsl(104deg 9% 32%);--ae-panel-border-radius:4px;--ae-subgroup-bg-color:hsl(99deg 11% 8%);--ae-subgroup-input-bg-color:hsl(99deg 11% 8%);--ae-subgroup-input-border-color:hsl(104deg 9% 32%);--ae-subpanel-bg-color:hsl(106deg 8% 12%);--ae-subpanel-border-color:hsl(104deg 9% 32%);--ae-subpanel-border-radius:8px;--ae-textarea-focus-color:hsl(56deg 30% 36%);--ae-input-focus-color:hsl(44deg 63% 55%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(104deg 9% 32%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(105deg 9% 77%);--ae-icon-hover-color:hsl(99deg 11% 8%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(98deg 9% 4%);--ae-nav-color:hsl(105deg 9% 77%);--ae-nav-hover-color:hsl(98deg 9% 4%);--ae-input-color:hsl(44deg 63% 55%);--ae-label-color:hsl(105deg 9% 77%);--ae-subgroup-input-color:hsl(44deg 63% 55%);--ae-placeholder-color:hsl(104deg 9% 32%);--ae-text-color:hsl(105deg 9% 77%);--ae-mobile-outside-gap-size:2px;--ae-mobile-inside-padding-size:2px;--ae-frame-bg-color:hsl(108deg 8% 12%);--ae-modal-bg-color:hsl(96deg 12% 8%);--ae-modal-icon-color:hsl(44deg 63% 55%);
|
extensions-builtin/sd_theme_editor/themes/backup.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(0deg 0% 10%);--ae-primary-color:hsl(168deg 96% 42%);--ae-input-bg-color:hsl(225deg 6% 13%);--ae-input-border-color:hsl(214deg 5% 30%);--ae-panel-bg-color:hsl(225deg 5% 17%);--ae-panel-border-color:hsl(214deg 5% 30%);--ae-panel-border-radius:0px;--ae-subgroup-bg-color:hsl(0deg 0% 10%);--ae-subgroup-input-bg-color:hsl(225deg 6% 13%);--ae-subgroup-input-border-color:hsl(214deg 5% 30%);--ae-subpanel-bg-color:hsl(220deg 4% 14%);--ae-subpanel-border-color:hsl(214deg 5% 30%);--ae-subpanel-border-radius:8px;--ae-textarea-focus-color:hsl(210deg 3% 36%);--ae-input-focus-color:hsl(168deg 97% 41%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(0deg 84% 60%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(168deg 96% 42%);--ae-icon-hover-color:hsl(0deg 0% 10%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(0deg 0% 4%);--ae-nav-color:hsl(210deg 4% 80%);--ae-nav-hover-color:hsl(0deg 0% 4%);--ae-input-color:hsl(210deg 4% 80%);--ae-label-color:hsl(210deg 4% 80%);--ae-subgroup-input-color:hsl(0deg 100% 100%);--ae-placeholder-color:hsl(214deg 5% 30%);--ae-text-color:hsl(210deg 4% 80%);--ae-mobile-outside-gap-size:3px;--ae-mobile-inside-padding-size:3px;--ae-frame-bg-color:hsl(225deg 6% 13%);--ae-modal-bg-color:hsl(0deg 0% 10%);--ae-modal-icon-color:hsl(168deg 97% 41%);
|
extensions-builtin/sd_theme_editor/themes/d-230-52-94.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(230deg 52% 4%);--ae-primary-color:hsl(38deg 148% 36%);--ae-input-bg-color:hsl(95deg 58% 7%);--ae-input-border-color:hsl(84deg 57% 24%);--ae-panel-bg-color:hsl(95deg 57% 11%);--ae-panel-border-color:hsl(84deg 57% 24%);--ae-panel-border-radius:0px;--ae-subgroup-bg-color:hsl(230deg 52% 4%);--ae-subgroup-input-bg-color:hsl(95deg 58% 7%);--ae-subgroup-input-border-color:hsl(84deg 57% 24%);--ae-subpanel-bg-color:hsl(90deg 56% 8%);--ae-subpanel-border-color:hsl(84deg 57% 24%);--ae-subpanel-border-radius:8px;--ae-textarea-focus-color:hsl(80deg 55% 30%);--ae-input-focus-color:hsl(38deg 149% 35%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(230deg 136% 54%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(80deg 56% 74%);--ae-icon-hover-color:hsl(230deg 52% 4%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(230deg 52% 98%);--ae-nav-color:hsl(80deg 56% 74%);--ae-nav-hover-color:hsl(230deg 52% 98%);--ae-input-color:hsl(80deg 56% 74%);--ae-label-color:hsl(80deg 56% 74%);--ae-subgroup-input-color:hsl(230deg 152% 94%);--ae-placeholder-color:hsl(84deg 57% 24%);--ae-text-color:hsl(80deg 56% 74%);--ae-mobile-outside-gap-size:3px;--ae-mobile-inside-padding-size:3px;--ae-frame-bg-color:hsl(94deg 60% 7%);--ae-modal-bg-color:hsl(229deg 52% 4%);--ae-modal-icon-color:hsl(38deg 100% 36%);
|
extensions-builtin/sd_theme_editor/themes/default.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(0deg 0% 10%);--ae-primary-color:hsl(168deg 97% 41%);--ae-input-bg-color:hsl(225deg 6% 13%);--ae-input-border-color:hsl(214deg 5% 30%);--ae-panel-bg-color:hsl(225deg 5% 17%);--ae-panel-border-color:hsl(214deg 5% 30%);--ae-panel-border-radius:0px;--ae-subgroup-bg-color:hsl(0deg 0% 10%);--ae-subgroup-input-bg-color:hsl(225deg 6% 13%);--ae-subgroup-input-border-color:hsl(214deg 5% 30%);--ae-subpanel-bg-color:hsl(220deg 4% 14%);--ae-subpanel-border-color:hsl(214deg 5% 30%);--ae-subpanel-border-radius:8px;--ae-textarea-focus-color:hsl(210deg 3% 36%);--ae-input-focus-color:hsl(168deg 97% 41%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(0deg 84% 60%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(168deg 97% 41%);--ae-icon-hover-color:hsl(0deg 0% 10%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(0deg 0% 4%);--ae-nav-color:hsl(210deg 4% 80%);--ae-nav-hover-color:hsl(0deg 0% 4%);--ae-input-color:hsl(210deg 4% 80%);--ae-label-color:hsl(210deg 4% 80%);--ae-subgroup-input-color:hsl(210deg 4% 80%);--ae-placeholder-color:hsl(214deg 5% 30%);--ae-text-color:hsl(210deg 4% 80%);--ae-mobile-outside-gap-size:2px;--ae-mobile-inside-padding-size:2px;--ae-frame-bg-color:hsl(225deg 6% 13%);--ae-modal-bg-color:hsl(0deg 0% 10%);--ae-modal-icon-color:hsl(168deg 97% 41%);
|
extensions-builtin/sd_theme_editor/themes/default_cyan.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(0deg 0% 10%);--ae-primary-color:hsl(199deg 60% 60%);--ae-input-bg-color:hsl(225deg 6% 13%);--ae-input-border-color:hsl(214deg 5% 30%);--ae-panel-bg-color:hsl(225deg 5% 17%);--ae-panel-border-color:hsl(214deg 5% 30%);--ae-panel-border-radius:0px;--ae-subgroup-bg-color:hsl(0deg 0% 10%);--ae-subgroup-input-bg-color:hsl(225deg 6% 13%);--ae-subgroup-input-border-color:hsl(214deg 5% 30%);--ae-subpanel-bg-color:hsl(220deg 4% 14%);--ae-subpanel-border-color:hsl(214deg 5% 30%);--ae-subpanel-border-radius:8px;--ae-textarea-focus-color:hsl(210deg 3% 36%);--ae-input-focus-color:hsl(199deg 60% 60%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(357deg 50% 57%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(210deg 4% 80%);--ae-icon-hover-color:hsl(0deg 0% 10%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(0deg 0% 4%);--ae-nav-color:hsl(210deg 4% 80%);--ae-nav-hover-color:hsl(0deg 0% 4%);--ae-input-color:hsl(210deg 4% 80%);--ae-label-color:hsl(210deg 4% 80%);--ae-subgroup-input-color:hsl(210deg 4% 80%);--ae-placeholder-color:hsl(214deg 5% 30%);--ae-text-color:hsl(210deg 4% 80%);--ae-mobile-outside-gap-size:2px;--ae-mobile-inside-padding-size:2px;--ae-frame-bg-color:hsl(225deg 6% 13%);--ae-modal-bg-color:hsl(0deg 0% 10%);--ae-modal-icon-color:hsl(199deg 60% 60%);
|
extensions-builtin/sd_theme_editor/themes/default_orange.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(0deg 0% 10%);--ae-primary-color:hsl(16deg 77% 60%);--ae-input-bg-color:hsl(225deg 6% 13%);--ae-input-border-color:hsl(214deg 5% 30%);--ae-panel-bg-color:hsl(225deg 5% 17%);--ae-panel-border-color:hsl(214deg 5% 30%);--ae-panel-border-radius:8px;--ae-subgroup-bg-color:hsl(0deg 0% 10%);--ae-subgroup-input-bg-color:hsl(225deg 6% 13%);--ae-subgroup-input-border-color:hsl(214deg 5% 30%);--ae-subpanel-bg-color:hsl(220deg 4% 14%);--ae-subpanel-border-color:hsl(214deg 5% 30%);--ae-subpanel-border-radius:8px;--ae-textarea-focus-color:hsl(210deg 3% 36%);--ae-input-focus-color:hsl(16deg 77% 60%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(193deg 54% 55%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(210deg 4% 80%);--ae-icon-hover-color:hsl(0deg 0% 10%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(0deg 0% 4%);--ae-nav-color:hsl(210deg 4% 80%);--ae-nav-hover-color:hsl(0deg 0% 4%);--ae-input-color:hsl(210deg 4% 80%);--ae-label-color:hsl(210deg 4% 80%);--ae-subgroup-input-color:hsl(210deg 4% 80%);--ae-placeholder-color:hsl(214deg 5% 30%);--ae-text-color:hsl(210deg 4% 80%);--ae-mobile-outside-gap-size:2px;--ae-mobile-inside-padding-size:2px;--ae-frame-bg-color:hsl(225deg 6% 13%);--ae-modal-bg-color:hsl(0deg 0% 10%);--ae-modal-icon-color:hsl(16deg 77% 60%);
|
extensions-builtin/sd_theme_editor/themes/fun.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(253deg 22% 8%);--ae-primary-color:hsl(76deg 96% 55%);--ae-input-bg-color:hsl(260deg 25% 12%);--ae-input-border-color:hsl(258deg 24% 32%);--ae-panel-bg-color:hsl(258deg 24% 20%);--ae-panel-border-color:hsl(258deg 24% 32%);--ae-panel-border-radius:4px;--ae-subgroup-bg-color:hsl(253deg 22% 8%);--ae-subgroup-input-bg-color:hsl(258deg 24% 8%);--ae-subgroup-input-border-color:hsl(258deg 24% 32%);--ae-subpanel-bg-color:hsl(260deg 25% 12%);--ae-subpanel-border-color:hsl(258deg 24% 32%);--ae-subpanel-border-radius:8px;--ae-textarea-focus-color:hsl(210deg 3% 36%);--ae-input-focus-color:hsl(296deg 96% 55%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(258deg 24% 32%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(259deg 24% 77%);--ae-icon-hover-color:hsl(253deg 22% 8%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(252deg 24% 4%);--ae-nav-color:hsl(259deg 24% 77%);--ae-nav-hover-color:hsl(252deg 24% 4%);--ae-input-color:hsl(305deg 96% 55%);--ae-label-color:hsl(259deg 24% 77%);--ae-subgroup-input-color:hsl(76deg 96% 55%);--ae-placeholder-color:hsl(258deg 24% 32%);--ae-text-color:hsl(259deg 24% 77%);--ae-mobile-outside-gap-size:2px;--ae-mobile-inside-padding-size:2px;--ae-frame-bg-color:hsl(260deg 25% 12%);--ae-modal-bg-color:hsl(253deg 22% 8%);--ae-modal-icon-color:hsl(76deg 96% 55%);
|
extensions-builtin/sd_theme_editor/themes/minimal.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(0deg 0% 8%);--ae-primary-color:hsl(168deg 96% 42%);--ae-input-bg-color:hsl(0deg 0% 10%);--ae-input-border-color:hsl(0deg 0% 10%);--ae-panel-bg-color:hsl(0deg 0% 17%);--ae-panel-border-color:hsl(0deg 0% 17%);--ae-panel-border-radius:4px;--ae-subgroup-bg-color:hsl(0deg 0% 10%);--ae-subgroup-input-bg-color:hsl(0deg 0% 10%);--ae-subgroup-input-border-color:hsl(0deg 0% 10%);--ae-subpanel-bg-color:hsl(0deg 0% 14%);--ae-subpanel-border-color:hsl(0deg 0% 15%);--ae-subpanel-border-radius:4px;--ae-textarea-focus-color:hsl(0deg 0% 36%);--ae-input-focus-color:hsl(168deg 97% 41%);--ae-outside-gap-size:1px;--ae-inside-padding-size:5px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(0deg 84% 60%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(168deg 96% 42%);--ae-icon-hover-color:hsl(0deg 0% 10%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(0deg 0% 4%);--ae-nav-color:hsl(0deg 0% 80%);--ae-nav-hover-color:hsl(0deg 0% 4%);--ae-input-color:hsl(210deg 4% 80%);--ae-label-color:hsl(0deg 0% 65%);--ae-subgroup-input-color:hsl(0deg 100% 100%);--ae-placeholder-color:hsl(0deg 0% 30%);--ae-text-color:hsl(0deg 0% 80%);--ae-mobile-outside-gap-size:3px;--ae-mobile-inside-padding-size:3px;--ae-frame-bg-color:hsl(0deg 0% 14%);--ae-modal-bg-color:hsl(0deg 0% 10%);--ae-modal-icon-color:hsl(168deg 97% 41%);
|
extensions-builtin/sd_theme_editor/themes/minimal_orange.css
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
--ae-main-bg-color:hsl(210deg 28% 8%);--ae-primary-color:hsl(18deg 124% 42%);--ae-input-bg-color:hsl(210deg 28% 10%);--ae-input-border-color:hsl(210deg 28% 10%);--ae-panel-bg-color:hsl(210deg 28% 17%);--ae-panel-border-color:hsl(210deg 28% 17%);--ae-panel-border-radius:4px;--ae-subgroup-bg-color:hsl(210deg 28% 10%);--ae-subgroup-input-bg-color:hsl(210deg 28% 10%);--ae-subgroup-input-border-color:hsl(210deg 28% 10%);--ae-subpanel-bg-color:hsl(210deg 28% 14%);--ae-subpanel-border-color:hsl(210deg 28% 15%);--ae-subpanel-border-radius:4px;--ae-textarea-focus-color:hsl(210deg 28% 36%);--ae-input-focus-color:hsl(18deg 125% 41%);--ae-outside-gap-size:8px;--ae-inside-padding-size:8px;--ae-tool-button-size:34px;--ae-tool-button-radius:16px;--ae-generate-button-height:70px;--ae-cancel-color:hsl(210deg 112% 60%);--ae-max-padding:max(var(--ae-outside-gap-size),var(--ae-inside-padding-size));--ae-icon-color:hsl(18deg 124% 42%);--ae-icon-hover-color:hsl(210deg 28% 10%);--ae-icon-size:22px;--ae-nav-bg-color:hsl(210deg 28% 4%);--ae-nav-color:hsl(210deg 28% 80%);--ae-nav-hover-color:hsl(210deg 28% 4%);--ae-input-color:hsl(60deg 32% 80%);--ae-label-color:hsl(210deg 28% 65%);--ae-subgroup-input-color:hsl(210deg 128% 100%);--ae-placeholder-color:hsl(210deg 28% 30%);--ae-text-color:hsl(210deg 28% 80%);--ae-mobile-outside-gap-size:3px;--ae-mobile-inside-padding-size:3px;--ae-frame-bg-color:hsl(210deg 28% 14%);--ae-modal-bg-color:hsl(210deg 28% 10%);--ae-modal-icon-color:hsl(18deg 125% 41%);
|