|
import os |
|
from collections import namedtuple |
|
|
|
import torch |
|
import tqdm |
|
import html |
|
import datetime |
|
import csv |
|
import safetensors.torch |
|
|
|
import numpy as np |
|
from PIL import Image, PngImagePlugin |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors |
|
import modules.textual_inversion.dataset |
|
from modules.textual_inversion.learn_schedule import LearnRateScheduler |
|
|
|
from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay |
|
from modules.textual_inversion.logging import save_settings_to_file |
|
|
|
|
|
TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"]) |
|
textual_inversion_templates = {} |
|
|
|
|
|
def list_textual_inversion_templates(): |
|
textual_inversion_templates.clear() |
|
|
|
for root, _, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): |
|
for fn in fns: |
|
path = os.path.join(root, fn) |
|
|
|
textual_inversion_templates[fn] = TextualInversionTemplate(fn, path) |
|
|
|
return textual_inversion_templates |
|
|
|
|
|
class Embedding: |
|
def __init__(self, vec, name, step=None): |
|
self.vec = vec |
|
self.name = name |
|
self.step = step |
|
self.shape = None |
|
self.vectors = 0 |
|
self.cached_checksum = None |
|
self.sd_checkpoint = None |
|
self.sd_checkpoint_name = None |
|
self.optimizer_state_dict = None |
|
self.filename = None |
|
|
|
def save(self, filename): |
|
embedding_data = { |
|
"string_to_token": {"*": 265}, |
|
"string_to_param": {"*": self.vec}, |
|
"name": self.name, |
|
"step": self.step, |
|
"sd_checkpoint": self.sd_checkpoint, |
|
"sd_checkpoint_name": self.sd_checkpoint_name, |
|
} |
|
|
|
torch.save(embedding_data, filename) |
|
|
|
if shared.opts.save_optimizer_state and self.optimizer_state_dict is not None: |
|
optimizer_saved_dict = { |
|
'hash': self.checksum(), |
|
'optimizer_state_dict': self.optimizer_state_dict, |
|
} |
|
torch.save(optimizer_saved_dict, f"{filename}.optim") |
|
|
|
def checksum(self): |
|
if self.cached_checksum is not None: |
|
return self.cached_checksum |
|
|
|
def const_hash(a): |
|
r = 0 |
|
for v in a: |
|
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF |
|
return r |
|
|
|
self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}' |
|
return self.cached_checksum |
|
|
|
|
|
class DirWithTextualInversionEmbeddings: |
|
def __init__(self, path): |
|
self.path = path |
|
self.mtime = None |
|
|
|
def has_changed(self): |
|
if not os.path.isdir(self.path): |
|
return False |
|
|
|
mt = os.path.getmtime(self.path) |
|
if self.mtime is None or mt > self.mtime: |
|
return True |
|
|
|
def update(self): |
|
if not os.path.isdir(self.path): |
|
return |
|
|
|
self.mtime = os.path.getmtime(self.path) |
|
|
|
|
|
class EmbeddingDatabase: |
|
def __init__(self): |
|
self.ids_lookup = {} |
|
self.word_embeddings = {} |
|
self.skipped_embeddings = {} |
|
self.expected_shape = -1 |
|
self.embedding_dirs = {} |
|
self.previously_displayed_embeddings = () |
|
|
|
def add_embedding_dir(self, path): |
|
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path) |
|
|
|
def clear_embedding_dirs(self): |
|
self.embedding_dirs.clear() |
|
|
|
def register_embedding(self, embedding, model): |
|
return self.register_embedding_by_name(embedding, model, embedding.name) |
|
|
|
def register_embedding_by_name(self, embedding, model, name): |
|
ids = model.cond_stage_model.tokenize([name])[0] |
|
first_id = ids[0] |
|
if first_id not in self.ids_lookup: |
|
self.ids_lookup[first_id] = [] |
|
if name in self.word_embeddings: |
|
|
|
lookup = [x for x in self.ids_lookup[first_id] if x[1].name!=name] |
|
else: |
|
lookup = self.ids_lookup[first_id] |
|
if embedding is not None: |
|
lookup += [(ids, embedding)] |
|
self.ids_lookup[first_id] = sorted(lookup, key=lambda x: len(x[0]), reverse=True) |
|
if embedding is None: |
|
|
|
if name in self.word_embeddings: |
|
del self.word_embeddings[name] |
|
if len(self.ids_lookup[first_id])==0: |
|
del self.ids_lookup[first_id] |
|
return None |
|
self.word_embeddings[name] = embedding |
|
return embedding |
|
|
|
def get_expected_shape(self): |
|
vec = shared.sd_model.cond_stage_model.encode_embedding_init_text(",", 1) |
|
return vec.shape[1] |
|
|
|
def load_from_file(self, path, filename): |
|
name, ext = os.path.splitext(filename) |
|
ext = ext.upper() |
|
|
|
if ext in ['.PNG', '.WEBP', '.JXL', '.AVIF']: |
|
_, second_ext = os.path.splitext(name) |
|
if second_ext.upper() == '.PREVIEW': |
|
return |
|
|
|
embed_image = Image.open(path) |
|
if hasattr(embed_image, 'text') and 'sd-ti-embedding' in embed_image.text: |
|
data = embedding_from_b64(embed_image.text['sd-ti-embedding']) |
|
name = data.get('name', name) |
|
else: |
|
data = extract_image_data_embed(embed_image) |
|
if data: |
|
name = data.get('name', name) |
|
else: |
|
|
|
return |
|
elif ext in ['.BIN', '.PT']: |
|
data = torch.load(path, map_location="cpu") |
|
elif ext in ['.SAFETENSORS']: |
|
data = safetensors.torch.load_file(path, device="cpu") |
|
else: |
|
return |
|
|
|
|
|
if 'string_to_param' in data: |
|
param_dict = data['string_to_param'] |
|
param_dict = getattr(param_dict, '_parameters', param_dict) |
|
assert len(param_dict) == 1, 'embedding file has multiple terms in it' |
|
emb = next(iter(param_dict.items()))[1] |
|
|
|
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: |
|
assert len(data.keys()) == 1, 'embedding file has multiple terms in it' |
|
|
|
emb = next(iter(data.values())) |
|
if len(emb.shape) == 1: |
|
emb = emb.unsqueeze(0) |
|
else: |
|
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") |
|
|
|
vec = emb.detach().to(devices.device, dtype=torch.float32) |
|
embedding = Embedding(vec, name) |
|
embedding.step = data.get('step', None) |
|
embedding.sd_checkpoint = data.get('sd_checkpoint', None) |
|
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) |
|
embedding.vectors = vec.shape[0] |
|
embedding.shape = vec.shape[-1] |
|
embedding.filename = path |
|
|
|
if self.expected_shape == -1 or self.expected_shape == embedding.shape: |
|
self.register_embedding(embedding, shared.sd_model) |
|
else: |
|
self.skipped_embeddings[name] = embedding |
|
|
|
def load_from_dir(self, embdir): |
|
if not os.path.isdir(embdir.path): |
|
return |
|
|
|
for root, _, fns in os.walk(embdir.path, followlinks=True): |
|
for fn in fns: |
|
try: |
|
fullfn = os.path.join(root, fn) |
|
|
|
if os.stat(fullfn).st_size == 0: |
|
continue |
|
|
|
self.load_from_file(fullfn, fn) |
|
except Exception: |
|
errors.report(f"Error loading embedding {fn}", exc_info=True) |
|
continue |
|
|
|
def load_textual_inversion_embeddings(self, force_reload=False): |
|
if not force_reload: |
|
need_reload = False |
|
for embdir in self.embedding_dirs.values(): |
|
if embdir.has_changed(): |
|
need_reload = True |
|
break |
|
|
|
if not need_reload: |
|
return |
|
|
|
self.ids_lookup.clear() |
|
self.word_embeddings.clear() |
|
self.skipped_embeddings.clear() |
|
self.expected_shape = self.get_expected_shape() |
|
|
|
for embdir in self.embedding_dirs.values(): |
|
self.load_from_dir(embdir) |
|
embdir.update() |
|
|
|
|
|
|
|
sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())} |
|
self.word_embeddings.clear() |
|
self.word_embeddings.update(sorted_word_embeddings) |
|
|
|
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys())) |
|
if self.previously_displayed_embeddings != displayed_embeddings: |
|
self.previously_displayed_embeddings = displayed_embeddings |
|
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}") |
|
if self.skipped_embeddings: |
|
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}") |
|
|
|
def find_embedding_at_position(self, tokens, offset): |
|
token = tokens[offset] |
|
possible_matches = self.ids_lookup.get(token, None) |
|
|
|
if possible_matches is None: |
|
return None, None |
|
|
|
for ids, embedding in possible_matches: |
|
if tokens[offset:offset + len(ids)] == ids: |
|
return embedding, len(ids) |
|
|
|
return None, None |
|
|
|
|
|
def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'): |
|
cond_model = shared.sd_model.cond_stage_model |
|
|
|
with devices.autocast(): |
|
cond_model([""]) |
|
|
|
|
|
embedded = cond_model.encode_embedding_init_text(init_text or '*', num_vectors_per_token) |
|
vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device) |
|
|
|
|
|
if init_text: |
|
for i in range(num_vectors_per_token): |
|
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token] |
|
|
|
|
|
name = "".join( x for x in name if (x.isalnum() or x in "._- ")) |
|
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt") |
|
if not overwrite_old: |
|
assert not os.path.exists(fn), f"file {fn} already exists" |
|
|
|
embedding = Embedding(vec, name) |
|
embedding.step = 0 |
|
embedding.save(fn) |
|
|
|
return fn |
|
|
|
|
|
def write_loss(log_directory, filename, step, epoch_len, values): |
|
if shared.opts.training_write_csv_every == 0: |
|
return |
|
|
|
if step % shared.opts.training_write_csv_every != 0: |
|
return |
|
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True |
|
|
|
with open(os.path.join(log_directory, filename), "a+", newline='') as fout: |
|
csv_writer = csv.DictWriter(fout, fieldnames=["step", "epoch", "epoch_step", *(values.keys())]) |
|
|
|
if write_csv_header: |
|
csv_writer.writeheader() |
|
|
|
epoch = (step - 1) // epoch_len |
|
epoch_step = (step - 1) % epoch_len |
|
|
|
csv_writer.writerow({ |
|
"step": step, |
|
"epoch": epoch, |
|
"epoch_step": epoch_step, |
|
**values, |
|
}) |
|
|
|
def tensorboard_setup(log_directory): |
|
os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True) |
|
return SummaryWriter( |
|
log_dir=os.path.join(log_directory, "tensorboard"), |
|
flush_secs=shared.opts.training_tensorboard_flush_every) |
|
|
|
def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num): |
|
tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step) |
|
tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step) |
|
tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step) |
|
tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step) |
|
|
|
def tensorboard_add_scaler(tensorboard_writer, tag, value, step): |
|
tensorboard_writer.add_scalar(tag=tag, |
|
scalar_value=value, global_step=step) |
|
|
|
def tensorboard_add_image(tensorboard_writer, tag, pil_image, step): |
|
|
|
img_tensor = torch.as_tensor(np.array(pil_image, copy=True)) |
|
img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], |
|
len(pil_image.getbands())) |
|
img_tensor = img_tensor.permute((2, 0, 1)) |
|
|
|
tensorboard_writer.add_image(tag, img_tensor, global_step=step) |
|
|
|
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"): |
|
assert model_name, f"{name} not selected" |
|
assert learn_rate, "Learning rate is empty or 0" |
|
assert isinstance(batch_size, int), "Batch size must be integer" |
|
assert batch_size > 0, "Batch size must be positive" |
|
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer" |
|
assert gradient_step > 0, "Gradient accumulation step must be positive" |
|
assert data_root, "Dataset directory is empty" |
|
assert os.path.isdir(data_root), "Dataset directory doesn't exist" |
|
assert os.listdir(data_root), "Dataset directory is empty" |
|
assert template_filename, "Prompt template file not selected" |
|
assert template_file, f"Prompt template file {template_filename} not found" |
|
assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist" |
|
assert steps, "Max steps is empty or 0" |
|
assert isinstance(steps, int), "Max steps must be integer" |
|
assert steps > 0, "Max steps must be positive" |
|
assert isinstance(save_model_every, int), "Save {name} must be integer" |
|
assert save_model_every >= 0, "Save {name} must be positive or 0" |
|
assert isinstance(create_image_every, int), "Create image must be integer" |
|
assert create_image_every >= 0, "Create image must be positive or 0" |
|
if save_model_every or create_image_every: |
|
assert log_directory, "Log directory is empty" |
|
|
|
|
|
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): |
|
save_embedding_every = save_embedding_every or 0 |
|
create_image_every = create_image_every or 0 |
|
template_file = textual_inversion_templates.get(template_filename, None) |
|
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding") |
|
template_file = template_file.path |
|
|
|
shared.state.job = "train-embedding" |
|
shared.state.textinfo = "Initializing textual inversion training..." |
|
shared.state.job_count = steps |
|
|
|
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') |
|
|
|
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), embedding_name) |
|
unload = shared.opts.unload_models_when_training |
|
|
|
if save_embedding_every > 0: |
|
embedding_dir = os.path.join(log_directory, "embeddings") |
|
os.makedirs(embedding_dir, exist_ok=True) |
|
else: |
|
embedding_dir = None |
|
|
|
if create_image_every > 0: |
|
images_dir = os.path.join(log_directory, "images") |
|
os.makedirs(images_dir, exist_ok=True) |
|
else: |
|
images_dir = None |
|
|
|
if create_image_every > 0 and save_image_with_stored_embedding: |
|
images_embeds_dir = os.path.join(log_directory, "image_embeddings") |
|
os.makedirs(images_embeds_dir, exist_ok=True) |
|
else: |
|
images_embeds_dir = None |
|
|
|
hijack = sd_hijack.model_hijack |
|
|
|
embedding = hijack.embedding_db.word_embeddings[embedding_name] |
|
checkpoint = sd_models.select_checkpoint() |
|
|
|
initial_step = embedding.step or 0 |
|
if initial_step >= steps: |
|
shared.state.textinfo = "Model has already been trained beyond specified max steps" |
|
return embedding, filename |
|
|
|
scheduler = LearnRateScheduler(learn_rate, steps, initial_step) |
|
clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else \ |
|
torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else \ |
|
None |
|
if clip_grad: |
|
clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False) |
|
|
|
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." |
|
old_parallel_processing_allowed = shared.parallel_processing_allowed |
|
|
|
if shared.opts.training_enable_tensorboard: |
|
tensorboard_writer = tensorboard_setup(log_directory) |
|
|
|
pin_memory = shared.opts.pin_memory |
|
|
|
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight) |
|
|
|
if shared.opts.save_training_settings_to_txt: |
|
save_settings_to_file(log_directory, {**dict(model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds), num_vectors_per_token=len(embedding.vec)), **locals()}) |
|
|
|
latent_sampling_method = ds.latent_sampling_method |
|
|
|
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory) |
|
|
|
if unload: |
|
shared.parallel_processing_allowed = False |
|
shared.sd_model.first_stage_model.to(devices.cpu) |
|
|
|
embedding.vec.requires_grad = True |
|
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate, weight_decay=0.0) |
|
if shared.opts.save_optimizer_state: |
|
optimizer_state_dict = None |
|
if os.path.exists(f"{filename}.optim"): |
|
optimizer_saved_dict = torch.load(f"{filename}.optim", map_location='cpu') |
|
if embedding.checksum() == optimizer_saved_dict.get('hash', None): |
|
optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None) |
|
|
|
if optimizer_state_dict is not None: |
|
optimizer.load_state_dict(optimizer_state_dict) |
|
print("Loaded existing optimizer from checkpoint") |
|
else: |
|
print("No saved optimizer exists in checkpoint") |
|
|
|
scaler = torch.cuda.amp.GradScaler() |
|
|
|
batch_size = ds.batch_size |
|
gradient_step = ds.gradient_step |
|
|
|
steps_per_epoch = len(ds) // batch_size // gradient_step |
|
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step |
|
loss_step = 0 |
|
_loss_step = 0 |
|
|
|
last_saved_file = "<none>" |
|
last_saved_image = "<none>" |
|
forced_filename = "<none>" |
|
embedding_yet_to_be_embedded = False |
|
|
|
is_training_inpainting_model = shared.sd_model.model.conditioning_key in {'hybrid', 'concat'} |
|
img_c = None |
|
|
|
pbar = tqdm.tqdm(total=steps - initial_step) |
|
try: |
|
sd_hijack_checkpoint.add() |
|
|
|
for _ in range((steps-initial_step) * gradient_step): |
|
if scheduler.finished: |
|
break |
|
if shared.state.interrupted: |
|
break |
|
for j, batch in enumerate(dl): |
|
|
|
if j == max_steps_per_epoch: |
|
break |
|
scheduler.apply(optimizer, embedding.step) |
|
if scheduler.finished: |
|
break |
|
if shared.state.interrupted: |
|
break |
|
|
|
if clip_grad: |
|
clip_grad_sched.step(embedding.step) |
|
|
|
with devices.autocast(): |
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) |
|
if use_weight: |
|
w = batch.weight.to(devices.device, non_blocking=pin_memory) |
|
c = shared.sd_model.cond_stage_model(batch.cond_text) |
|
|
|
if is_training_inpainting_model: |
|
if img_c is None: |
|
img_c = processing.txt2img_image_conditioning(shared.sd_model, c, training_width, training_height) |
|
|
|
cond = {"c_concat": [img_c], "c_crossattn": [c]} |
|
else: |
|
cond = c |
|
|
|
if use_weight: |
|
loss = shared.sd_model.weighted_forward(x, cond, w)[0] / gradient_step |
|
del w |
|
else: |
|
loss = shared.sd_model.forward(x, cond)[0] / gradient_step |
|
del x |
|
|
|
_loss_step += loss.item() |
|
scaler.scale(loss).backward() |
|
|
|
|
|
if (j + 1) % gradient_step != 0: |
|
continue |
|
|
|
if clip_grad: |
|
clip_grad(embedding.vec, clip_grad_sched.learn_rate) |
|
|
|
scaler.step(optimizer) |
|
scaler.update() |
|
embedding.step += 1 |
|
pbar.update() |
|
optimizer.zero_grad(set_to_none=True) |
|
loss_step = _loss_step |
|
_loss_step = 0 |
|
|
|
steps_done = embedding.step + 1 |
|
|
|
epoch_num = embedding.step // steps_per_epoch |
|
epoch_step = embedding.step % steps_per_epoch |
|
|
|
description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}" |
|
pbar.set_description(description) |
|
if embedding_dir is not None and steps_done % save_embedding_every == 0: |
|
|
|
embedding_name_every = f'{embedding_name}-{steps_done}' |
|
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt') |
|
save_embedding(embedding, optimizer, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True) |
|
embedding_yet_to_be_embedded = True |
|
|
|
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, { |
|
"loss": f"{loss_step:.7f}", |
|
"learn_rate": scheduler.learn_rate |
|
}) |
|
|
|
if images_dir is not None and steps_done % create_image_every == 0: |
|
forced_filename = f'{embedding_name}-{steps_done}' |
|
last_saved_image = os.path.join(images_dir, forced_filename) |
|
|
|
shared.sd_model.first_stage_model.to(devices.device) |
|
|
|
p = processing.StableDiffusionProcessingTxt2Img( |
|
sd_model=shared.sd_model, |
|
do_not_save_grid=True, |
|
do_not_save_samples=True, |
|
do_not_reload_embeddings=True, |
|
) |
|
|
|
if preview_from_txt2img: |
|
p.prompt = preview_prompt |
|
p.negative_prompt = preview_negative_prompt |
|
p.steps = preview_steps |
|
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name |
|
p.cfg_scale = preview_cfg_scale |
|
p.seed = preview_seed |
|
p.width = preview_width |
|
p.height = preview_height |
|
else: |
|
p.prompt = batch.cond_text[0] |
|
p.steps = 20 |
|
p.width = training_width |
|
p.height = training_height |
|
|
|
preview_text = p.prompt |
|
|
|
processed = processing.process_images(p) |
|
image = processed.images[0] if len(processed.images) > 0 else None |
|
|
|
if unload: |
|
shared.sd_model.first_stage_model.to(devices.cpu) |
|
|
|
if image is not None: |
|
shared.state.assign_current_image(image) |
|
|
|
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) |
|
last_saved_image += f", prompt: {preview_text}" |
|
|
|
if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: |
|
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step) |
|
|
|
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded: |
|
|
|
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png') |
|
|
|
info = PngImagePlugin.PngInfo() |
|
data = torch.load(last_saved_file) |
|
info.add_text("sd-ti-embedding", embedding_to_b64(data)) |
|
|
|
title = f"<{data.get('name', '???')}>" |
|
|
|
try: |
|
vectorSize = list(data['string_to_param'].values())[0].shape[0] |
|
except Exception: |
|
vectorSize = '?' |
|
|
|
checkpoint = sd_models.select_checkpoint() |
|
footer_left = checkpoint.model_name |
|
footer_mid = f'[{checkpoint.shorthash}]' |
|
footer_right = f'{vectorSize}v {steps_done}s' |
|
|
|
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right) |
|
captioned_image = insert_image_data_embed(captioned_image, data) |
|
|
|
captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info) |
|
embedding_yet_to_be_embedded = False |
|
|
|
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False) |
|
last_saved_image += f", prompt: {preview_text}" |
|
|
|
shared.state.job_no = embedding.step |
|
|
|
shared.state.textinfo = f""" |
|
<p> |
|
Loss: {loss_step:.7f}<br/> |
|
Step: {steps_done}<br/> |
|
Last prompt: {html.escape(batch.cond_text[0])}<br/> |
|
Last saved embedding: {html.escape(last_saved_file)}<br/> |
|
Last saved image: {html.escape(last_saved_image)}<br/> |
|
</p> |
|
""" |
|
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') |
|
save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True) |
|
except Exception: |
|
errors.report("Error training embedding", exc_info=True) |
|
finally: |
|
pbar.leave = False |
|
pbar.close() |
|
shared.sd_model.first_stage_model.to(devices.device) |
|
shared.parallel_processing_allowed = old_parallel_processing_allowed |
|
sd_hijack_checkpoint.remove() |
|
|
|
return embedding, filename |
|
|
|
|
|
def save_embedding(embedding, optimizer, checkpoint, embedding_name, filename, remove_cached_checksum=True): |
|
old_embedding_name = embedding.name |
|
old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None |
|
old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None |
|
old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None |
|
try: |
|
embedding.sd_checkpoint = checkpoint.shorthash |
|
embedding.sd_checkpoint_name = checkpoint.model_name |
|
if remove_cached_checksum: |
|
embedding.cached_checksum = None |
|
embedding.name = embedding_name |
|
embedding.optimizer_state_dict = optimizer.state_dict() |
|
embedding.save(filename) |
|
except: |
|
embedding.sd_checkpoint = old_sd_checkpoint |
|
embedding.sd_checkpoint_name = old_sd_checkpoint_name |
|
embedding.name = old_embedding_name |
|
embedding.cached_checksum = old_cached_checksum |
|
raise |
|
|