File size: 35,708 Bytes
f555b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
import datetime
import glob
import html
import os
import inspect

import modules.textual_inversion.dataset
import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
from modules.textual_inversion import textual_inversion, logging
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_

from collections import deque
from statistics import stdev, mean


optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}

class HypernetworkModule(torch.nn.Module):
    activation_dict = {
        "linear": torch.nn.Identity,
        "relu": torch.nn.ReLU,
        "leakyrelu": torch.nn.LeakyReLU,
        "elu": torch.nn.ELU,
        "swish": torch.nn.Hardswish,
        "tanh": torch.nn.Tanh,
        "sigmoid": torch.nn.Sigmoid,
    }
    activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})

    def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
                 add_layer_norm=False, activate_output=False, dropout_structure=None):
        super().__init__()

        self.multiplier = 1.0

        assert layer_structure is not None, "layer_structure must not be None"
        assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
        assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"

        linears = []
        for i in range(len(layer_structure) - 1):

            # Add a fully-connected layer
            linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))

            # Add an activation func except last layer
            if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
                pass
            elif activation_func in self.activation_dict:
                linears.append(self.activation_dict[activation_func]())
            else:
                raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')

            # Add layer normalization
            if add_layer_norm:
                linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))

            # Everything should be now parsed into dropout structure, and applied here.
            # Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
            if dropout_structure is not None and dropout_structure[i+1] > 0:
                assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
                linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
            # Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].

        self.linear = torch.nn.Sequential(*linears)

        if state_dict is not None:
            self.fix_old_state_dict(state_dict)
            self.load_state_dict(state_dict)
        else:
            for layer in self.linear:
                if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
                    w, b = layer.weight.data, layer.bias.data
                    if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
                        normal_(w, mean=0.0, std=0.01)
                        normal_(b, mean=0.0, std=0)
                    elif weight_init == 'XavierUniform':
                        xavier_uniform_(w)
                        zeros_(b)
                    elif weight_init == 'XavierNormal':
                        xavier_normal_(w)
                        zeros_(b)
                    elif weight_init == 'KaimingUniform':
                        kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
                        zeros_(b)
                    elif weight_init == 'KaimingNormal':
                        kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
                        zeros_(b)
                    else:
                        raise KeyError(f"Key {weight_init} is not defined as initialization!")
        self.to(devices.device)

    def fix_old_state_dict(self, state_dict):
        changes = {
            'linear1.bias': 'linear.0.bias',
            'linear1.weight': 'linear.0.weight',
            'linear2.bias': 'linear.1.bias',
            'linear2.weight': 'linear.1.weight',
        }

        for fr, to in changes.items():
            x = state_dict.get(fr, None)
            if x is None:
                continue

            del state_dict[fr]
            state_dict[to] = x

    def forward(self, x):
        return x + self.linear(x) * (self.multiplier if not self.training else 1)

    def trainables(self):
        layer_structure = []
        for layer in self.linear:
            if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
                layer_structure += [layer.weight, layer.bias]
        return layer_structure


#param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
    if layer_structure is None:
        layer_structure = [1, 2, 1]
    if not use_dropout:
        return [0] * len(layer_structure)
    dropout_values = [0]
    dropout_values.extend([0.3] * (len(layer_structure) - 3))
    if last_layer_dropout:
        dropout_values.append(0.3)
    else:
        dropout_values.append(0)
    dropout_values.append(0)
    return dropout_values


class Hypernetwork:
    filename = None
    name = None

    def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
        self.filename = None
        self.name = name
        self.layers = {}
        self.step = 0
        self.sd_checkpoint = None
        self.sd_checkpoint_name = None
        self.layer_structure = layer_structure
        self.activation_func = activation_func
        self.weight_init = weight_init
        self.add_layer_norm = add_layer_norm
        self.use_dropout = use_dropout
        self.activate_output = activate_output
        self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
        self.dropout_structure = kwargs.get('dropout_structure', None)
        if self.dropout_structure is None:
            self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
        self.optimizer_name = None
        self.optimizer_state_dict = None
        self.optional_info = None

        for size in enable_sizes or []:
            self.layers[size] = (
                HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
                                   self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
                HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
                                   self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
            )
        self.eval()

    def weights(self):
        res = []
        for layers in self.layers.values():
            for layer in layers:
                res += layer.parameters()
        return res

    def train(self, mode=True):
        for layers in self.layers.values():
            for layer in layers:
                layer.train(mode=mode)
                for param in layer.parameters():
                    param.requires_grad = mode

    def to(self, device):
        for layers in self.layers.values():
            for layer in layers:
                layer.to(device)

        return self

    def set_multiplier(self, multiplier):
        for layers in self.layers.values():
            for layer in layers:
                layer.multiplier = multiplier

        return self

    def eval(self):
        for layers in self.layers.values():
            for layer in layers:
                layer.eval()
                for param in layer.parameters():
                    param.requires_grad = False

    def save(self, filename):
        state_dict = {}
        optimizer_saved_dict = {}

        for k, v in self.layers.items():
            state_dict[k] = (v[0].state_dict(), v[1].state_dict())

        state_dict['step'] = self.step
        state_dict['name'] = self.name
        state_dict['layer_structure'] = self.layer_structure
        state_dict['activation_func'] = self.activation_func
        state_dict['is_layer_norm'] = self.add_layer_norm
        state_dict['weight_initialization'] = self.weight_init
        state_dict['sd_checkpoint'] = self.sd_checkpoint
        state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
        state_dict['activate_output'] = self.activate_output
        state_dict['use_dropout'] = self.use_dropout
        state_dict['dropout_structure'] = self.dropout_structure
        state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
        state_dict['optional_info'] = self.optional_info if self.optional_info else None

        if self.optimizer_name is not None:
            optimizer_saved_dict['optimizer_name'] = self.optimizer_name

        torch.save(state_dict, filename)
        if shared.opts.save_optimizer_state and self.optimizer_state_dict:
            optimizer_saved_dict['hash'] = self.shorthash()
            optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
            torch.save(optimizer_saved_dict, filename + '.optim')

    def load(self, filename):
        self.filename = filename
        if self.name is None:
            self.name = os.path.splitext(os.path.basename(filename))[0]

        state_dict = torch.load(filename, map_location='cpu')

        self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
        self.optional_info = state_dict.get('optional_info', None)
        self.activation_func = state_dict.get('activation_func', None)
        self.weight_init = state_dict.get('weight_initialization', 'Normal')
        self.add_layer_norm = state_dict.get('is_layer_norm', False)
        self.dropout_structure = state_dict.get('dropout_structure', None)
        self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
        self.activate_output = state_dict.get('activate_output', True)
        self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
        # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
        if self.dropout_structure is None:
            self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)

        if shared.opts.print_hypernet_extra:
            if self.optional_info is not None:
                print(f"  INFO:\n {self.optional_info}\n")

            print(f"  Layer structure: {self.layer_structure}")
            print(f"  Activation function: {self.activation_func}")
            print(f"  Weight initialization: {self.weight_init}")
            print(f"  Layer norm: {self.add_layer_norm}")
            print(f"  Dropout usage: {self.use_dropout}" )
            print(f"  Activate last layer: {self.activate_output}")
            print(f"  Dropout structure: {self.dropout_structure}")

        optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {}

        if self.shorthash() == optimizer_saved_dict.get('hash', None):
            self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
        else:
            self.optimizer_state_dict = None
        if self.optimizer_state_dict:
            self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
            if shared.opts.print_hypernet_extra:
                print("Loaded existing optimizer from checkpoint")
                print(f"Optimizer name is {self.optimizer_name}")
        else:
            self.optimizer_name = "AdamW"
            if shared.opts.print_hypernet_extra:
                print("No saved optimizer exists in checkpoint")

        for size, sd in state_dict.items():
            if type(size) == int:
                self.layers[size] = (
                    HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
                                       self.add_layer_norm, self.activate_output, self.dropout_structure),
                    HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
                                       self.add_layer_norm, self.activate_output, self.dropout_structure),
                )

        self.name = state_dict.get('name', self.name)
        self.step = state_dict.get('step', 0)
        self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
        self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
        self.eval()

    def shorthash(self):
        sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')

        return sha256[0:10] if sha256 else None


def list_hypernetworks(path):
    res = {}
    for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):
        name = os.path.splitext(os.path.basename(filename))[0]
        # Prevent a hypothetical "None.pt" from being listed.
        if name != "None":
            res[name] = filename
    return res


def load_hypernetwork(name):
    path = shared.hypernetworks.get(name, None)

    if path is None:
        return None

    try:
        hypernetwork = Hypernetwork()
        hypernetwork.load(path)
        return hypernetwork
    except Exception:
        errors.report(f"Error loading hypernetwork {path}", exc_info=True)
        return None


def load_hypernetworks(names, multipliers=None):
    already_loaded = {}

    for hypernetwork in shared.loaded_hypernetworks:
        if hypernetwork.name in names:
            already_loaded[hypernetwork.name] = hypernetwork

    shared.loaded_hypernetworks.clear()

    for i, name in enumerate(names):
        hypernetwork = already_loaded.get(name, None)
        if hypernetwork is None:
            hypernetwork = load_hypernetwork(name)

        if hypernetwork is None:
            continue

        hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0)
        shared.loaded_hypernetworks.append(hypernetwork)


def find_closest_hypernetwork_name(search: str):
    if not search:
        return None
    search = search.lower()
    applicable = [name for name in shared.hypernetworks if search in name.lower()]
    if not applicable:
        return None
    applicable = sorted(applicable, key=lambda name: len(name))
    return applicable[0]


def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
    hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)

    if hypernetwork_layers is None:
        return context_k, context_v

    if layer is not None:
        layer.hyper_k = hypernetwork_layers[0]
        layer.hyper_v = hypernetwork_layers[1]

    context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
    context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
    return context_k, context_v


def apply_hypernetworks(hypernetworks, context, layer=None):
    context_k = context
    context_v = context
    for hypernetwork in hypernetworks:
        context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer)

    return context_k, context_v


def attention_CrossAttention_forward(self, x, context=None, mask=None):
    h = self.heads

    q = self.to_q(x)
    context = default(context, x)

    context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self)
    k = self.to_k(context_k)
    v = self.to_v(context_v)

    q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))

    sim = einsum('b i d, b j d -> b i j', q, k) * self.scale

    if mask is not None:
        mask = rearrange(mask, 'b ... -> b (...)')
        max_neg_value = -torch.finfo(sim.dtype).max
        mask = repeat(mask, 'b j -> (b h) () j', h=h)
        sim.masked_fill_(~mask, max_neg_value)

    # attention, what we cannot get enough of
    attn = sim.softmax(dim=-1)

    out = einsum('b i j, b j d -> b i d', attn, v)
    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
    return self.to_out(out)


def stack_conds(conds):
    if len(conds) == 1:
        return torch.stack(conds)

    # same as in reconstruct_multicond_batch
    token_count = max([x.shape[0] for x in conds])
    for i in range(len(conds)):
        if conds[i].shape[0] != token_count:
            last_vector = conds[i][-1:]
            last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
            conds[i] = torch.vstack([conds[i], last_vector_repeated])

    return torch.stack(conds)


def statistics(data):
    if len(data) < 2:
        std = 0
    else:
        std = stdev(data)
    total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
    recent_data = data[-32:]
    if len(recent_data) < 2:
        std = 0
    else:
        std = stdev(recent_data)
    recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
    return total_information, recent_information


def report_statistics(loss_info:dict):
    keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
    for key in keys:
        try:
            print("Loss statistics for file " + key)
            info, recent = statistics(list(loss_info[key]))
            print(info)
            print(recent)
        except Exception as e:
            print(e)


def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
    # Remove illegal characters from name.
    name = "".join( x for x in name if (x.isalnum() or x in "._- "))
    assert name, "Name cannot be empty!"

    fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
    if not overwrite_old:
        assert not os.path.exists(fn), f"file {fn} already exists"

    if type(layer_structure) == str:
        layer_structure = [float(x.strip()) for x in layer_structure.split(",")]

    if use_dropout and dropout_structure and type(dropout_structure) == str:
        dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]
    else:
        dropout_structure = [0] * len(layer_structure)

    hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
        name=name,
        enable_sizes=[int(x) for x in enable_sizes],
        layer_structure=layer_structure,
        activation_func=activation_func,
        weight_init=weight_init,
        add_layer_norm=add_layer_norm,
        use_dropout=use_dropout,
        dropout_structure=dropout_structure
    )
    hypernet.save(fn)

    shared.reload_hypernetworks()


def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
    # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
    from modules import images

    save_hypernetwork_every = save_hypernetwork_every or 0
    create_image_every = create_image_every or 0
    template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)
    textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
    template_file = template_file.path

    path = shared.hypernetworks.get(hypernetwork_name, None)
    hypernetwork = Hypernetwork()
    hypernetwork.load(path)
    shared.loaded_hypernetworks = [hypernetwork]

    shared.state.job = "train-hypernetwork"
    shared.state.textinfo = "Initializing hypernetwork training..."
    shared.state.job_count = steps

    hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')

    log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
    unload = shared.opts.unload_models_when_training

    if save_hypernetwork_every > 0:
        hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
        os.makedirs(hypernetwork_dir, exist_ok=True)
    else:
        hypernetwork_dir = None

    if create_image_every > 0:
        images_dir = os.path.join(log_directory, "images")
        os.makedirs(images_dir, exist_ok=True)
    else:
        images_dir = None

    checkpoint = sd_models.select_checkpoint()

    initial_step = hypernetwork.step or 0
    if initial_step >= steps:
        shared.state.textinfo = "Model has already been trained beyond specified max steps"
        return hypernetwork, filename

    scheduler = LearnRateScheduler(learn_rate, steps, initial_step)

    clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
    if clip_grad:
        clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)

    if shared.opts.training_enable_tensorboard:
        tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)

    # dataset loading may take a while, so input validations and early returns should be done before this
    shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."

    pin_memory = shared.opts.pin_memory

    ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)

    if shared.opts.save_training_settings_to_txt:
        saved_params = dict(
            model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),
            **{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
        )
        logging.save_settings_to_file(log_directory, {**saved_params, **locals()})

    latent_sampling_method = ds.latent_sampling_method

    dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)

    old_parallel_processing_allowed = shared.parallel_processing_allowed

    if unload:
        shared.parallel_processing_allowed = False
        shared.sd_model.cond_stage_model.to(devices.cpu)
        shared.sd_model.first_stage_model.to(devices.cpu)

    weights = hypernetwork.weights()
    hypernetwork.train()

    # Here we use optimizer from saved HN, or we can specify as UI option.
    if hypernetwork.optimizer_name in optimizer_dict:
        optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
        optimizer_name = hypernetwork.optimizer_name
    else:
        print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
        optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
        optimizer_name = 'AdamW'

    if hypernetwork.optimizer_state_dict:  # This line must be changed if Optimizer type can be different from saved optimizer.
        try:
            optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
        except RuntimeError as e:
            print("Cannot resume from saved optimizer!")
            print(e)

    scaler = torch.cuda.amp.GradScaler()

    batch_size = ds.batch_size
    gradient_step = ds.gradient_step
    # n steps = batch_size * gradient_step * n image processed
    steps_per_epoch = len(ds) // batch_size // gradient_step
    max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
    loss_step = 0
    _loss_step = 0 #internal
    # size = len(ds.indexes)
    # loss_dict = defaultdict(lambda : deque(maxlen = 1024))
    loss_logging = deque(maxlen=len(ds) * 3)  # this should be configurable parameter, this is 3 * epoch(dataset size)
    # losses = torch.zeros((size,))
    # previous_mean_losses = [0]
    # previous_mean_loss = 0
    # print("Mean loss of {} elements".format(size))

    steps_without_grad = 0

    last_saved_file = "<none>"
    last_saved_image = "<none>"
    forced_filename = "<none>"

    pbar = tqdm.tqdm(total=steps - initial_step)
    try:
        sd_hijack_checkpoint.add()

        for _ in range((steps-initial_step) * gradient_step):
            if scheduler.finished:
                break
            if shared.state.interrupted:
                break
            for j, batch in enumerate(dl):
                # works as a drop_last=True for gradient accumulation
                if j == max_steps_per_epoch:
                    break
                scheduler.apply(optimizer, hypernetwork.step)
                if scheduler.finished:
                    break
                if shared.state.interrupted:
                    break

                if clip_grad:
                    clip_grad_sched.step(hypernetwork.step)

                with devices.autocast():
                    x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        w = batch.weight.to(devices.device, non_blocking=pin_memory)
                    if tag_drop_out != 0 or shuffle_tags:
                        shared.sd_model.cond_stage_model.to(devices.device)
                        c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
                        shared.sd_model.cond_stage_model.to(devices.cpu)
                    else:
                        c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
                    if use_weight:
                        loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
                        del w
                    else:
                        loss = shared.sd_model.forward(x, c)[0] / gradient_step
                    del x
                    del c

                    _loss_step += loss.item()
                scaler.scale(loss).backward()

                # go back until we reach gradient accumulation steps
                if (j + 1) % gradient_step != 0:
                    continue
                loss_logging.append(_loss_step)
                if clip_grad:
                    clip_grad(weights, clip_grad_sched.learn_rate)

                scaler.step(optimizer)
                scaler.update()
                hypernetwork.step += 1
                pbar.update()
                optimizer.zero_grad(set_to_none=True)
                loss_step = _loss_step
                _loss_step = 0

                steps_done = hypernetwork.step + 1

                epoch_num = hypernetwork.step // steps_per_epoch
                epoch_step = hypernetwork.step % steps_per_epoch

                description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
                pbar.set_description(description)
                if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
                    # Before saving, change name to match current checkpoint.
                    hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
                    last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
                    hypernetwork.optimizer_name = optimizer_name
                    if shared.opts.save_optimizer_state:
                        hypernetwork.optimizer_state_dict = optimizer.state_dict()
                    save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
                    hypernetwork.optimizer_state_dict = None  # dereference it after saving, to save memory.



                if shared.opts.training_enable_tensorboard:
                    epoch_num = hypernetwork.step // len(ds)
                    epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
                    mean_loss = sum(loss_logging) / len(loss_logging)
                    textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)

                textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
                    "loss": f"{loss_step:.7f}",
                    "learn_rate": scheduler.learn_rate
                })

                if images_dir is not None and steps_done % create_image_every == 0:
                    forced_filename = f'{hypernetwork_name}-{steps_done}'
                    last_saved_image = os.path.join(images_dir, forced_filename)
                    hypernetwork.eval()
                    rng_state = torch.get_rng_state()
                    cuda_rng_state = None
                    if torch.cuda.is_available():
                        cuda_rng_state = torch.cuda.get_rng_state_all()
                    shared.sd_model.cond_stage_model.to(devices.device)
                    shared.sd_model.first_stage_model.to(devices.device)

                    p = processing.StableDiffusionProcessingTxt2Img(
                        sd_model=shared.sd_model,
                        do_not_save_grid=True,
                        do_not_save_samples=True,
                    )

                    p.disable_extra_networks = True

                    if preview_from_txt2img:
                        p.prompt = preview_prompt
                        p.negative_prompt = preview_negative_prompt
                        p.steps = preview_steps
                        p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
                        p.cfg_scale = preview_cfg_scale
                        p.seed = preview_seed
                        p.width = preview_width
                        p.height = preview_height
                    else:
                        p.prompt = batch.cond_text[0]
                        p.steps = 20
                        p.width = training_width
                        p.height = training_height

                    preview_text = p.prompt

                    processed = processing.process_images(p)
                    image = processed.images[0] if len(processed.images) > 0 else None

                    if unload:
                        shared.sd_model.cond_stage_model.to(devices.cpu)
                        shared.sd_model.first_stage_model.to(devices.cpu)
                    torch.set_rng_state(rng_state)
                    if torch.cuda.is_available():
                        torch.cuda.set_rng_state_all(cuda_rng_state)
                    hypernetwork.train()
                    if image is not None:
                        shared.state.assign_current_image(image)
                        if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
                            textual_inversion.tensorboard_add_image(tensorboard_writer,
                                                                    f"Validation at epoch {epoch_num}", image,
                                                                    hypernetwork.step)
                        last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
                        last_saved_image += f", prompt: {preview_text}"

                shared.state.job_no = hypernetwork.step

                shared.state.textinfo = f"""
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
    except Exception:
        errors.report("Exception in training hypernetwork", exc_info=True)
    finally:
        pbar.leave = False
        pbar.close()
        hypernetwork.eval()
        #report_statistics(loss_dict)
        sd_hijack_checkpoint.remove()



    filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
    hypernetwork.optimizer_name = optimizer_name
    if shared.opts.save_optimizer_state:
        hypernetwork.optimizer_state_dict = optimizer.state_dict()
    save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)

    del optimizer
    hypernetwork.optimizer_state_dict = None  # dereference it after saving, to save memory.
    shared.sd_model.cond_stage_model.to(devices.device)
    shared.sd_model.first_stage_model.to(devices.device)
    shared.parallel_processing_allowed = old_parallel_processing_allowed

    return hypernetwork, filename

def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
    old_hypernetwork_name = hypernetwork.name
    old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
    old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
    try:
        hypernetwork.sd_checkpoint = checkpoint.shorthash
        hypernetwork.sd_checkpoint_name = checkpoint.model_name
        hypernetwork.name = hypernetwork_name
        hypernetwork.save(filename)
    except:
        hypernetwork.sd_checkpoint = old_sd_checkpoint
        hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
        hypernetwork.name = old_hypernetwork_name
        raise