File size: 4,576 Bytes
f555b43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import re

import torch
import gradio as gr
from fastapi import FastAPI

import lora
import extra_networks_lora
import ui_extra_networks_lora
from modules import script_callbacks, ui_extra_networks, extra_networks, shared

def unload():
    torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
    torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
    torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
    torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
    torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
    torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora


def before_ui():
    ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
    extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())


if not hasattr(torch.nn, 'Linear_forward_before_lora'):
    torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward

if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
    torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict

if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
    torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward

if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
    torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict

if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
    torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward

if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
    torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict

torch.nn.Linear.forward = lora.lora_Linear_forward
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict

script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui)
script_callbacks.on_infotext_pasted(lora.infotext_pasted)


shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
    "sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras),
    "lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
    "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
}))


shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
    "lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
}))


def create_lora_json(obj: lora.LoraOnDisk):
    return {
        "name": obj.name,
        "alias": obj.alias,
        "path": obj.filename,
        "metadata": obj.metadata,
    }


def api_loras(_: gr.Blocks, app: FastAPI):
    @app.get("/sdapi/v1/loras")
    async def get_loras():
        return [create_lora_json(obj) for obj in lora.available_loras.values()]

    @app.post("/sdapi/v1/refresh-loras")
    async def refresh_loras():
        return lora.list_available_loras()


script_callbacks.on_app_started(api_loras)

re_lora = re.compile("<lora:([^:]+):")


def infotext_pasted(infotext, d):
    hashes = d.get("Lora hashes")
    if not hashes:
        return

    hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
    hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}

    def lora_replacement(m):
        alias = m.group(1)
        shorthash = hashes.get(alias)
        if shorthash is None:
            return m.group(0)

        lora_on_disk = lora.available_lora_hash_lookup.get(shorthash)
        if lora_on_disk is None:
            return m.group(0)

        return f'<lora:{lora_on_disk.get_alias()}:'

    d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"])


script_callbacks.on_infotext_pasted(infotext_pasted)