|
--- |
|
library_name: xpmir |
|
--- |
|
# SPLADE_DistilMSE: SPLADEv2 trained with the distillated triplets |
|
Training data from: https://github.com/sebastian-hofstaetter/neural-ranking-kd |
|
|
|
From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models |
|
More Effective (Thibault Formal, Carlos Lassance, Benjamin Piwowarski, |
|
Stéphane Clinchant). 2022. https://arxiv.org/abs/2205.04733 |
|
|
|
|
|
|
|
|
|
|
|
## Using the model |
|
The model can be loaded with [experimaestro |
|
IR](https://experimaestro-ir.readthedocs.io/en/latest/) |
|
|
|
```py from xpmir.models import AutoModel |
|
from xpmir.models import AutoModel |
|
|
|
# Model that can be re-used in experiments |
|
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE") |
|
|
|
# Use this if you want to actually use the model |
|
model = AutoModel.load_from_hf_hub("xpmir/SPLADE_DistilMSE", as_instance=True) |
|
model.initialize() model.rsv("walgreens store sales average", "The average |
|
Walgreens salary ranges...") |
|
``` |
|
|
|
|
|
## Results |
|
|
|
| Dataset | AP | P@20 | RR | RR@10 | nDCG | nDCG@10 | nDCG@20 | |
|
|----| ---|------|------|------|------|------|------| |
|
| trec2019 | 0.5102 | 0.7360 | 0.9612 | 0.9612 | 0.7407 | 0.7300 | 0.7097 | |
|
| msmarco_dev | 0.3623 | 0.0384 | 0.3673 | 0.3560 | 0.4870 | 0.4207 | 0.4451 | |
|
|