whisper-tiny-zh / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
44d65e3
|
raw
history blame
2.15 kB
metadata
language:
  - zh
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-tiny
model-index:
  - name: Whisper Tiny Chinese
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 zh-CN
          type: mozilla-foundation/common_voice_11_0
          config: zh-CN
          split: test
          args: zh-CN
        metrics:
          - type: wer
            value: 91.09343588847129
            name: Wer

Whisper Tiny Chinese

This model is a fine-tuned version of openai/whisper-tiny on the mozilla-foundation/common_voice_11_0 zh-CN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6121
  • Wer: 91.0934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9397 2.02 1000 0.6568 98.7326
0.5387 4.04 2000 0.6149 94.5197
0.3317 6.06 3000 0.6080 95.0354
0.225 8.07 4000 0.6121 91.0934
0.3166 11.0 5000 0.6092 92.3171

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2