whisper-tiny-zh-TW / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
841049a
|
raw
history blame
2.19 kB
---
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: xmzhu/whisper-tiny-zh
model-index:
- name: Whisper Tiny Chinese (Taiwanese Mandarin)
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 zh-TW
type: mozilla-foundation/common_voice_11_0
config: zh-TW
split: test
args: zh-TW
metrics:
- type: wer
value: 68.84339815762537
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Chinese (Taiwanese Mandarin)
This model is a fine-tuned version of [xmzhu/whisper-tiny-zh](https://huggingface.co/xmzhu/whisper-tiny-zh) on the mozilla-foundation/common_voice_11_0 zh-TW dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4879
- Wer: 68.8434
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.1221 | 6.02 | 1000 | 0.4879 | 68.8434 |
| 0.0119 | 13.02 | 2000 | 0.5567 | 70.2354 |
| 0.004 | 20.01 | 3000 | 0.5890 | 70.6244 |
| 0.0027 | 27.0 | 4000 | 0.6128 | 72.4053 |
| 0.0021 | 33.02 | 5000 | 0.6177 | 71.9140 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2