leaderboard-pr-bot's picture
Adding Evaluation Results
d7e949e verified
|
raw
history blame
2.67 kB
metadata
license: llama3.2
library_name: transformers
tags:
  - llama-factory
  - freeze
  - generated_from_trainer
base_model: unsloth/Llama-3.2-3B-Instruct
model-index:
  - name: Llama-3.2-3B-Instruct-24-9-29
    results: []

my DC sever

https://discord.gg/yaTfFF6Ut2

我正在計畫微調64K指令模型,請幫助我進行計畫

Support me here if you're interested:

Ko-fi: https://ko-fi.com/ogodwin10

Llama-3.2-3B-Instruct-24-9-29

This model is a fine-tuned version of unsloth/Llama-3.2-3B-Instruct on the lmsys_chat dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.256 0.0160 100 1.1817
1.236 0.0320 200 1.1817
1.2212 0.0480 300 1.1817
1.1804 0.0641 400 1.1817
1.2801 0.0801 500 1.1817
1.2232 0.0961 600 1.1817
1.2433 0.1121 700 1.1817
1.2231 0.1281 800 1.1817
1.2272 0.1441 900 1.1817
1.2843 0.1602 1000 1.1817

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.4.0+cu124
  • Datasets 2.19.1
  • Tokenizers 0.20.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 23.70
IFEval (0-Shot) 73.32
BBH (3-Shot) 24.20
MATH Lvl 5 (4-Shot) 15.26
GPQA (0-shot) 3.24
MuSR (0-shot) 1.44
MMLU-PRO (5-shot) 24.76