Files changed (1) hide show
  1. README.md +78 -3
README.md CHANGED
@@ -34,8 +34,23 @@ It achieves the following results on the evaluation set:
34
  - Accuracy: 0.875
35
 
36
  ## Model description
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
- More information needed
39
 
40
  ## Intended uses & limitations
41
 
@@ -43,12 +58,11 @@ More information needed
43
 
44
  ## Training and evaluation data
45
 
46
- {'eval_loss': 0.8208037614822388, 'eval_accuracy': 0.875, 'eval_runtime': 5.3137, 'eval_samples_per_second': 30.111, 'eval_steps_per_second': 0.941, 'epoch': 3.0}
47
-
48
  More information needed
49
 
50
  ## Training procedure
51
 
 
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
@@ -65,12 +79,73 @@ The following hyperparameters were used during training:
65
 
66
  ### Training results
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
  | 0.8456 | 1.0 | 5 | 0.8537 | 0.8562 |
71
  | 0.7982 | 2.0 | 10 | 0.8021 | 0.8875 |
72
  | 0.8028 | 3.0 | 15 | 0.8028 | 0.8438 |
73
 
 
 
74
 
75
  ### Framework versions
76
 
 
34
  - Accuracy: 0.875
35
 
36
  ## Model description
37
+ Fine Tuning from google/vit-base-patch16-224-in21k and dataset from FastJobs/Visual_Emotional_Analysis
38
+
39
+ Preprocessing :
40
+
41
+ Resize: Resizes the image to 224x224 pixels using bilinear interpolation. This ensures all images have consistent dimensions when fed into the model.
42
+
43
+ RandomHorizontalFlip: Randomly flips the image horizontally with a 50% probability. This helps the model learn to recognize objects from different horizontal orientations.
44
+
45
+ RandomVerticalFlip: Randomly flips the image vertically with a 50% probability. This helps the model learn to recognize objects from different vertical orientations.
46
+
47
+ ColorJitter: Randomly alters the brightness, contrast, saturation, and hue of the image. This simulates variations in lighting and color conditions, allowing the model to learn from a wider range of color variations.
48
+
49
+ ToTensor: Converts the image into a PyTorch tensor, which is the format required for processing images in deep learning frameworks like PyTorch.
50
+
51
+ Normalize: Normalizes each pixel of the image by subtracting the mean (0.5) and dividing by the standard deviation (0.5). This normalization helps stabilize training and improve model convergence.
52
+
53
 
 
54
 
55
  ## Intended uses & limitations
56
 
 
58
 
59
  ## Training and evaluation data
60
 
 
 
61
  More information needed
62
 
63
  ## Training procedure
64
 
65
+
66
  ### Training hyperparameters
67
 
68
  The following hyperparameters were used during training:
 
79
 
80
  ### Training results
81
 
82
+ Epoch Training Loss Validation Loss Accuracy
83
+ 1 2.084400 2.090225 0.137500
84
+ 2 2.089700 2.086973 0.118750
85
+ 3 2.079400 2.086899 0.100000
86
+ 4 2.098200 2.086151 0.125000
87
+ 5 2.093100 2.082829 0.137500
88
+ 6 2.083900 2.081236 0.137500
89
+ 7 2.082900 2.086800 0.081250
90
+ 8 2.060600 2.077514 0.162500
91
+ 9 2.085300 2.068546 0.143750
92
+ 10 2.071300 2.076601 0.131250
93
+ 11 2.059300 2.063258 0.175000
94
+ 12 2.054800 2.067919 0.125000
95
+ 13 2.063700 2.059906 0.150000
96
+ 14 2.044800 2.059610 0.206250
97
+ 15 2.042200 2.055763 0.181250
98
+ 16 2.029200 2.058503 0.193750
99
+ 17 2.033300 2.042262 0.206250
100
+ 18 2.003300 2.043147 0.206250
101
+ 19 1.987800 2.035327 0.218750
102
+ 20 1.987600 2.015316 0.206250
103
+ 21 1.991800 2.010191 0.231250
104
+ 22 1.973300 1.999294 0.250000
105
+ 23 1.950500 1.980282 0.331250
106
+ 24 1.930900 1.963615 0.281250
107
+ 25 1.887600 1.942629 0.325000
108
+ 26 1.870200 1.901906 0.381250
109
+ 27 1.836300 1.867780 0.387500
110
+ 28 1.804300 1.846487 0.393750
111
+ 29 1.752700 1.806786 0.431250
112
+ 30 1.681600 1.756060 0.437500
113
+ 31 1.660400 1.708304 0.475000
114
+ 32 1.624700 1.659365 0.493750
115
+ 33 1.567100 1.620911 0.481250
116
+ 34 1.503100 1.585212 0.506250
117
+ 35 1.482700 1.546996 0.518750
118
+ 36 1.468600 1.519542 0.562500
119
+ 37 1.423800 1.493005 0.575000
120
+ 38 1.393500 1.469010 0.531250
121
+ 39 1.297800 1.446551 0.550000
122
+ 40 1.322000 1.407961 0.556250
123
+ 41 1.322300 1.385930 0.562500
124
+ 42 1.254800 1.374024 0.562500
125
+ 43 1.183200 1.338247 0.531250
126
+ 44 1.173300 1.316369 0.575000
127
+ 45 1.100100 1.283046 0.593750
128
+ 46 1.069300 1.298898 0.575000
129
+ 47 1.045900 1.297686 0.587500
130
+ 48 1.032000 1.269446 0.600000
131
+ 49 0.962800 1.252569 0.606250
132
+ 50 0.929700 1.248749 0.587500
133
+ 51 0.938900 1.213704 0.618750
134
+ 52 0.887200 1.219889 0.581250
135
+ 53 0.797000 1.228908 0.575000
136
+ 54 0.736100 1.185892 0.631250
137
+
138
+ KeyboardInterrupt because disk full: --> continue from checkpoint 270 / epoch 54
139
+
140
+
141
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
142
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
143
  | 0.8456 | 1.0 | 5 | 0.8537 | 0.8562 |
144
  | 0.7982 | 2.0 | 10 | 0.8021 | 0.8875 |
145
  | 0.8028 | 3.0 | 15 | 0.8028 | 0.8438 |
146
 
147
+ Result :
148
+ {'eval_loss': 0.8208037614822388, 'eval_accuracy': 0.875, 'eval_runtime': 5.3137, 'eval_samples_per_second': 30.111, 'eval_steps_per_second': 0.941, 'epoch': 3.0}
149
 
150
  ### Framework versions
151