vit-base-1e-4-20ep / README.md
vuongnhathien's picture
Sdt ao
42df027 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-1e-4-20ep
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: vuongnhathien/30VNFoods
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8873015873015873

vit-base-1e-4-20ep

This model is a fine-tuned version of google/vit-base-patch16-224 on the vuongnhathien/30VNFoods dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4034
  • Accuracy: 0.8873

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5376 1.0 275 0.4677 0.8640
0.2085 2.0 550 0.4375 0.8811
0.0755 3.0 825 0.4605 0.8899
0.0429 4.0 1100 0.4784 0.8879
0.0146 5.0 1375 0.5386 0.8799
0.0176 6.0 1650 0.5524 0.8803
0.0137 7.0 1925 0.5249 0.8887
0.0076 8.0 2200 0.5401 0.8942
0.0026 9.0 2475 0.5477 0.8934
0.0054 10.0 2750 0.5417 0.8946
0.0034 11.0 3025 0.5430 0.8974
0.0033 12.0 3300 0.5443 0.8954
0.0027 13.0 3575 0.5423 0.8986
0.0024 14.0 3850 0.5434 0.8990
0.0027 15.0 4125 0.5483 0.8962
0.0027 16.0 4400 0.5485 0.8998
0.0019 17.0 4675 0.5502 0.8998
0.0022 18.0 4950 0.5508 0.8998
0.0015 19.0 5225 0.5509 0.9002
0.002 20.0 5500 0.5510 0.9010

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2