convnext-nano-20ep / README.md
vuongnhathien's picture
ok
100b5e1 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-nano-22k-384
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnext-nano-20ep
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: vuongnhathien/30VNFoods
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8702380952380953

convnext-nano-20ep

This model is a fine-tuned version of facebook/convnextv2-nano-22k-384 on the vuongnhathien/30VNFoods dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4812
  • Accuracy: 0.8702

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5831 1.0 275 0.5660 0.8278
0.3159 2.0 550 0.5093 0.8529
0.1892 3.0 825 0.4719 0.8779
0.1111 4.0 1100 0.5067 0.8755
0.0886 5.0 1375 0.5278 0.8708
0.0697 6.0 1650 0.6000 0.8628
0.0396 7.0 1925 0.6158 0.8736
0.0386 8.0 2200 0.6448 0.8684
0.0323 9.0 2475 0.5637 0.8915
0.0157 10.0 2750 0.5845 0.8958
0.0067 11.0 3025 0.5574 0.9018
0.005 12.0 3300 0.5378 0.9034
0.0031 13.0 3575 0.5526 0.9014
0.0023 14.0 3850 0.5419 0.9093
0.0026 15.0 4125 0.5323 0.9113
0.0024 16.0 4400 0.5298 0.9117
0.0019 17.0 4675 0.5323 0.9121
0.002 18.0 4950 0.5315 0.9125
0.0012 19.0 5225 0.5314 0.9121
0.0019 20.0 5500 0.5315 0.9117

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2