Edit model card

jpqd-swin-b-15eph-r1.00-s2e5-mock-main-merge-pr2

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2970
  • Accuracy: 0.9144

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8787 0.42 500 3.9971 0.7163
0.8429 0.84 1000 0.6450 0.8678
0.8561 1.27 1500 0.4160 0.8945
0.5777 1.69 2000 0.3664 0.9006
12.3601 2.11 2500 12.0328 0.9023
49.0606 2.54 3000 48.5000 0.8526
75.3173 2.96 3500 75.5341 0.6942
93.6153 3.38 4000 93.3091 0.5929
103.5744 3.8 4500 103.1211 0.5846
107.7701 4.23 5000 108.0755 0.5398
109.5736 4.65 5500 108.7624 0.5855
1.8028 5.07 6000 1.0960 0.8179
1.2549 5.49 6500 0.6560 0.8695
0.7199 5.92 7000 0.5619 0.8769
0.8874 6.34 7500 0.5151 0.8859
0.7429 6.76 8000 0.4830 0.8898
0.6759 7.19 8500 0.4681 0.8926
0.5352 7.61 9000 0.4360 0.8956
0.6021 8.03 9500 0.4202 0.8979
0.5617 8.45 10000 0.3940 0.9003
0.7235 8.88 10500 0.3915 0.9000
0.5323 9.3 11000 0.3793 0.9017
0.589 9.72 11500 0.3670 0.9051
0.425 10.14 12000 0.3615 0.9059
0.7103 10.57 12500 0.3479 0.9070
0.6251 10.99 13000 0.3472 0.9073
0.623 11.41 13500 0.3353 0.9088
0.6012 11.83 14000 0.3292 0.9098
0.4984 12.26 14500 0.3230 0.9112
0.4763 12.68 15000 0.3158 0.9109
0.3209 13.1 15500 0.3120 0.9123
0.4854 13.52 16000 0.3057 0.9126
0.5472 13.95 16500 0.3032 0.9134
0.3264 14.37 17000 0.3013 0.9134
0.4136 14.79 17500 0.2977 0.9141

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train vuiseng9/swin-base-food101-int8-structured43-15eph

Evaluation results