kavyamanohar's picture
Update README.md
bccc85c verified
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
datasets:
  - thennal/IMaSC
  - vrclc/festvox-iiith-ml
  - vrclc/openslr63
language:
  - ml
library_name: transformers
pipeline_tag: text-generation
model-index:
  - name: w2v2bert-Malayalam
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: OpenSLR Malayalam -Test
          type: vrclc/openslr63
          config: ml
          split: test
          args: ml
        metrics:
          - type: wer
            value: 8.82
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Goole Fleurs
          type: google/fleurs
          config: ml
          split: test
          args: ml
        metrics:
          - type: wer
            value: 32.01
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 16 Malayalam
          type: mozilla-foundation/common_voice_16_1
          config: ml
          split: test
          args: ml
        metrics:
          - type: wer
            value: 52.72
            name: WER

W2V2-BERT-withLM-Studio-Malayalam

This model is a fine-tuned version of facebook/w2v-bert-2.0 on IMASC, OpenSLR Malayalam Train split, Festvox Malayalamdataset. It achieves the following results on the evaluation set:

  • Loss: 0.1587
  • Wer: 0.1157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0335 0.4932 600 0.3654 0.4387
0.1531 0.9864 1200 0.2373 0.3332
0.1074 1.4797 1800 0.2069 0.2953
0.0928 1.9729 2400 0.2146 0.2814
0.0734 2.4661 3000 0.1947 0.2433
0.0678 2.9593 3600 0.1938 0.2406
0.0522 3.4525 4200 0.1566 0.2053
0.0493 3.9457 4800 0.1649 0.1988
0.0366 4.4390 5400 0.1417 0.1834
0.0372 4.9322 6000 0.1542 0.1749
0.028 5.4254 6600 0.1476 0.1620
0.0263 5.9186 7200 0.1388 0.1622
0.0195 6.4118 7800 0.1384 0.1495
0.0185 6.9051 8400 0.1351 0.1383
0.0136 7.3983 9000 0.1404 0.1344
0.0119 7.8915 9600 0.1253 0.1276
0.0087 8.3847 10200 0.1443 0.1284
0.0066 8.8779 10800 0.1475 0.1252
0.0049 9.3711 11400 0.1577 0.1227
0.0038 9.8644 12000 0.1587 0.1157

Framework versions

  • Transformers 4.42.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1