distilhubert-v2-v3 / README.md
vpingale07's picture
End of training
f0ab681 verified
|
raw
history blame
1.98 kB
---
license: apache-2.0
base_model: vpingale07/distilhubert-v2
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: vpingale07/distilhubert-v2-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.76
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vpingale07/distilhubert-v2-finetuned-gtzan
This model is a fine-tuned version of [vpingale07/distilhubert-v2](https://huggingface.co/vpingale07/distilhubert-v2) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7594
- Accuracy: 0.76
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.844 | 1.0 | 100 | 1.0321 | 0.665 |
| 0.577 | 2.0 | 200 | 0.9200 | 0.72 |
| 0.3848 | 3.0 | 300 | 0.8345 | 0.74 |
| 0.2614 | 4.0 | 400 | 0.7594 | 0.76 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2