Edit model card

segcrack9k_conglomerate_segformer

This model is a fine-tuned version of nvidia/mit-b5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0333
  • Mean Iou: 0.3608
  • Mean Accuracy: 0.7217
  • Overall Accuracy: 0.7217
  • Accuracy Background: nan
  • Accuracy Crack: 0.7217
  • Iou Background: 0.0
  • Iou Crack: 0.7217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Crack Iou Background Iou Crack
0.0259 0.14 1000 0.0404 0.3267 0.6534 0.6534 nan 0.6534 0.0 0.6534
0.0186 0.27 2000 0.0378 0.3586 0.7172 0.7172 nan 0.7172 0.0 0.7172
0.0348 0.41 3000 0.0375 0.3209 0.6418 0.6418 nan 0.6418 0.0 0.6418
0.011 0.54 4000 0.0356 0.3496 0.6991 0.6991 nan 0.6991 0.0 0.6991
0.0132 0.68 5000 0.0350 0.3459 0.6918 0.6918 nan 0.6918 0.0 0.6918
0.0573 0.81 6000 0.0339 0.3575 0.7149 0.7149 nan 0.7149 0.0 0.7149
0.1466 0.95 7000 0.0333 0.3608 0.7217 0.7217 nan 0.7217 0.0 0.7217

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
13
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for varcoder/segcrack9k_conglomerate_segformer

Base model

nvidia/mit-b5
Finetuned
(42)
this model