vapari's picture
End of training
026512a verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7866666666666666

wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of facebook/wav2vec2-base on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2095
  • Accuracy: 0.7867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0746 1.0 107 1.9697 0.46
1.5843 2.0 214 1.5908 0.5067
1.5982 3.0 321 1.4385 0.58
1.2855 4.0 428 1.3906 0.5467
1.0562 5.0 535 1.0173 0.7
0.8919 6.0 642 0.9564 0.6733
0.7214 7.0 749 0.8906 0.7467
0.7624 8.0 856 0.9580 0.7467
0.3619 9.0 963 1.0685 0.7733
0.3814 10.0 1070 1.1847 0.7467
0.4371 11.0 1177 0.9630 0.7867
0.3186 12.0 1284 0.9635 0.82
0.1474 13.0 1391 1.0021 0.8333
0.0918 14.0 1498 1.4497 0.7533
0.0592 15.0 1605 1.2592 0.7733
0.0084 16.0 1712 1.2656 0.7867
0.0216 17.0 1819 1.2095 0.7867

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0