Edit model card

llama-3-qlora-ultrachat-200k-processed-indicator-0.6

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the yihanwang617/ultrachat_200k_processed_indicator_0.6_4k dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0200

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.0614 0.0616 200 1.0632
1.0689 0.1232 400 1.0476
1.0053 0.1847 600 1.0413
1.0446 0.2463 800 1.0366
1.0091 0.3079 1000 1.0336
1.0093 0.3695 1200 1.0310
1.0086 0.4311 1400 1.0291
1.0362 0.4926 1600 1.0270
1.0155 0.5542 1800 1.0256
1.0138 0.6158 2000 1.0240
1.0392 0.6774 2200 1.0226
1.0079 0.7389 2400 1.0216
1.0139 0.8005 2600 1.0208
0.9857 0.8621 2800 1.0204
1.0258 0.9237 3000 1.0201
1.0147 0.9853 3200 1.0200

Framework versions

  • PEFT 0.12.0
  • Transformers 4.40.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
8.03B params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ucla-cmllab/llama-3-qlora-ultrachat-200k-processed-indicator-0.6

Adapter
(504)
this model

Collection including ucla-cmllab/llama-3-qlora-ultrachat-200k-processed-indicator-0.6