ubaada's picture
Update README.md
57f5cfc verified
|
raw
history blame
2.25 kB
---
base_model: google/pegasus-x-large
tags:
- summarization
- summary
- booksum
- long-document
- long-form
datasets:
- ubaada/booksum-complete-cleaned
language:
- en
pipeline_tag: summarization
metrics:
- rouge
model-index:
- name: ubaada/pegasus-x-large-booksum-16k
results:
- task:
type: summarization
name: Summarization
dataset:
name: ubaada/booksum-complete-cleaned
type: BookSum
config: ubaada--booksum
split: test
metrics:
- type: rouge
value: 30.947853
name: ROUGE-1
verified: false
- type: rouge
value: 5.568146
name: ROUGE-2
verified: false
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pegasus-x-large-booksum-16k
This model is a fine-tuned version of [google/pegasus-x-large](https://huggingface.co/google/pegasus-x-large) on [ubaada/booksum-complete-cleaned](https://huggingface.co/datasets/ubaada/booksum-complete-cleaned). It was trained on the 'train' split of chapters sub-dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9677
- Rouge1: 0.3504
- Rouge2: 0.0525
- Rougel: 0.1398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
| 1.417 | 0.9996 | 628 | 1.9677 | 0.3504 | 0.0525 | 0.1398 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.0
- Datasets 2.19.1
- Tokenizers 0.19.1