squad_qa_title_v5_full_qaonly_Qwen_Qwen1.5-4B_3e-5_lora
This model is a fine-tuned version of Qwen/Qwen1.5-4B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.3449
- Accuracy: 0.5876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9916 | 74 | 1.6290 | 0.6255 |
1.924 | 1.9966 | 149 | 1.6617 | 0.6233 |
1.4922 | 2.9883 | 223 | 1.6980 | 0.6205 |
1.4922 | 3.9933 | 298 | 1.7298 | 0.6192 |
1.4068 | 4.9983 | 373 | 1.7481 | 0.6196 |
1.2983 | 5.9899 | 447 | 1.8004 | 0.6162 |
1.185 | 6.9950 | 522 | 1.8513 | 0.6133 |
1.185 | 8.0 | 597 | 1.9491 | 0.6078 |
1.0272 | 8.9916 | 671 | 2.0439 | 0.6047 |
0.837 | 9.9966 | 746 | 2.0819 | 0.6030 |
0.6959 | 10.9883 | 820 | 2.2470 | 0.5975 |
0.6959 | 11.9933 | 895 | 2.3402 | 0.5950 |
0.5675 | 12.9983 | 970 | 2.4646 | 0.5927 |
0.4565 | 13.9899 | 1044 | 2.5360 | 0.5919 |
0.4075 | 14.9950 | 1119 | 2.6063 | 0.5919 |
0.4075 | 16.0 | 1194 | 2.6696 | 0.5902 |
0.371 | 16.9916 | 1268 | 2.7577 | 0.5906 |
0.3443 | 17.9966 | 1343 | 2.8044 | 0.5889 |
0.3357 | 18.9883 | 1417 | 2.7873 | 0.5904 |
0.3357 | 19.9933 | 1492 | 2.7809 | 0.5918 |
0.3235 | 20.9983 | 1567 | 2.8768 | 0.5891 |
0.3152 | 21.9899 | 1641 | 2.8592 | 0.5899 |
0.3142 | 22.9950 | 1716 | 2.8668 | 0.5921 |
0.3142 | 24.0 | 1791 | 2.9501 | 0.5910 |
0.3092 | 24.9916 | 1865 | 2.9203 | 0.5912 |
0.3032 | 25.9966 | 1940 | 2.9752 | 0.5924 |
0.3044 | 26.9883 | 2014 | 2.9303 | 0.5905 |
0.3044 | 27.9933 | 2089 | 2.9913 | 0.5915 |
0.2998 | 28.9983 | 2164 | 2.9710 | 0.5901 |
0.2958 | 29.9899 | 2238 | 3.0960 | 0.5935 |
0.2977 | 30.9950 | 2313 | 2.9996 | 0.592 |
0.2977 | 32.0 | 2388 | 3.0486 | 0.5914 |
0.2935 | 32.9916 | 2462 | 3.0225 | 0.5911 |
0.2931 | 33.9966 | 2537 | 2.9860 | 0.5912 |
0.293 | 34.9883 | 2611 | 3.0856 | 0.5903 |
0.293 | 35.9933 | 2686 | 3.0234 | 0.5893 |
0.2909 | 36.9983 | 2761 | 3.0614 | 0.5922 |
0.2879 | 37.9899 | 2835 | 3.0555 | 0.5918 |
0.2906 | 38.9950 | 2910 | 3.1130 | 0.5921 |
0.2906 | 40.0 | 2985 | 3.1067 | 0.5913 |
0.2865 | 40.9916 | 3059 | 3.1949 | 0.5905 |
0.2857 | 41.9966 | 3134 | 3.1127 | 0.5913 |
0.2879 | 42.9883 | 3208 | 3.1623 | 0.5907 |
0.2879 | 43.9933 | 3283 | 3.1368 | 0.5901 |
0.2844 | 44.9983 | 3358 | 3.1650 | 0.5898 |
0.2838 | 45.9899 | 3432 | 3.2152 | 0.5893 |
0.2851 | 46.9950 | 3507 | 3.1605 | 0.5906 |
0.2851 | 48.0 | 3582 | 3.1204 | 0.5917 |
0.282 | 48.9916 | 3656 | 3.1551 | 0.5883 |
0.2812 | 49.5812 | 3700 | 3.3449 | 0.5876 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for tyzhu/squad_qa_title_v5_full_qaonly_Qwen_Qwen1.5-4B_3e-5_lora
Base model
Qwen/Qwen1.5-4B