lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.9359
- Accuracy: 0.7135
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.86 | 1.0 | 529 | 1.6920 | 0.6057 |
1.8271 | 2.0 | 1058 | 1.6426 | 0.6119 |
1.7324 | 3.0 | 1587 | 1.5998 | 0.6163 |
1.6818 | 4.0 | 2116 | 1.5580 | 0.6220 |
1.5864 | 5.0 | 2645 | 1.5211 | 0.6278 |
1.5204 | 6.0 | 3174 | 1.4863 | 0.6327 |
1.4481 | 7.0 | 3703 | 1.4517 | 0.6372 |
1.3768 | 8.0 | 4232 | 1.4121 | 0.6429 |
1.2946 | 9.0 | 4761 | 1.3739 | 0.6482 |
1.243 | 10.0 | 5290 | 1.3364 | 0.6532 |
1.1425 | 11.0 | 5819 | 1.2968 | 0.6594 |
1.0847 | 12.0 | 6348 | 1.2539 | 0.6652 |
1.0152 | 13.0 | 6877 | 1.2164 | 0.6706 |
0.9498 | 14.0 | 7406 | 1.1770 | 0.6758 |
0.8652 | 15.0 | 7935 | 1.1323 | 0.6821 |
0.8265 | 16.0 | 8464 | 1.0826 | 0.6901 |
0.7432 | 17.0 | 8993 | 1.0463 | 0.6960 |
0.7106 | 18.0 | 9522 | 1.0098 | 0.7022 |
0.669 | 19.0 | 10051 | 0.9696 | 0.7078 |
0.6043 | 20.0 | 10580 | 0.9359 | 0.7135 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_3e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3self-reported0.713