Inoichan's picture
Update README.md
9b3e386 verified
---
language:
- ja
license:
- cc-by-nc-4.0
tags:
- heron
- vision
- image-captioning
- VQA
pipeline_tag: image-to-text
inference: false
---
# Heron GIT Japanese StableLM Base 7B
## Model Details
Heron GIT Japanese StableLM Base 7B is a vision-language model that can converse about input images.<br>
This model was trained using [the heron library](https://github.com/turingmotors/heron). Please refer to the code for details.
## Usage
Follow [the installation guide](https://github.com/turingmotors/heron/).
```python
import torch
from heron.models.git_llm.git_japanese_stablelm_alpha import GitJapaneseStableLMAlphaForCausalLM
from transformers import AutoProcessor, LlamaTokenizer
device_id = 0
device = f"cuda:{device_id}"
MODEL_NAME = "turing-motors/heron-chat-git-ja-stablelm-base-7b-v1"
model = GitJapaneseStableLMAlphaForCausalLM.from_pretrained(
MODEL_NAME, torch_dtype=torch.float16, ignore_mismatched_sizes=True
)
model.eval()
model.to(device)
# prepare a processor
processor = AutoProcessor.from_pretrained(MODEL_NAME)
tokenizer = LlamaTokenizer.from_pretrained(
"novelai/nerdstash-tokenizer-v1",
padding_side="right",
additional_special_tokens=["▁▁"],
)
processor.tokenizer = tokenizer
import requests
from PIL import Image
# prepare inputs
url = "https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw)
text = f"##human: この画像の面白い点は何ですか?\n##gpt: "
# do preprocessing
inputs = processor(
text=text,
images=image,
return_tensors="pt",
truncation=True,
)
inputs = {k: v.to(device) for k, v in inputs.items()}
# do inference
with torch.no_grad():
out = model.generate(**inputs, max_length=256, do_sample=False, temperature=0., no_repeat_ngram_size=2)
# print result
print(processor.tokenizer.batch_decode(out))
```
## Model Details
* **Developed by**: [Turing Inc.](https://www.turing-motors.com/)
* **Adaptor type**: [GIT](https://arxiv.org/abs/2205.14100)
* **Lamguage Model**: [Japanese StableLM Base Alpha](https://huggingface.co/stabilityai/japanese-stablelm-base-alpha-7b)
* **Language(s)**: Japanese
### Training
1. The GIT adaptor was trained with LLaVA-Pratrain-JA.
2. The LLM and the adapter were fully fine-tuned with LLaVA-Instruct-620K-JA-v2.
### Training Dataset
1. LLaVA-Pratrain-JA
2. LLaVA-Instruct-620K-JA-v2
## Use and Limitations
### Intended Use
This model is intended for use in chat-like applications and for research purposes.
### Limitations
The model may produce inaccurate or false information, and its accuracy is not guaranteed. It is still in the research and development stage.
## How to cite
```bibtex
@misc{inoue2024heronbench,
title={Heron-Bench: A Benchmark for Evaluating Vision Language Models in Japanese},
author={Yuichi Inoue and Kento Sasaki and Yuma Ochi and Kazuki Fujii and Kotaro Tanahashi and Yu Yamaguchi},
year={2024},
eprint={2404.07824},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
---
license: cc-by-nc-4.0
---