tuanmanh28's picture
End of training
b1e477f verified
metadata
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vi
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-base-vietnamese-clean-dataset-20-epochs
    results: []

wav2vec2-base-vietnamese-clean-dataset-20-epochs

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5701
  • Wer: 0.2489

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
15.8906 0.41 500 22.2498 1.0
10.675 0.81 1000 16.8372 1.0
7.7286 1.22 1500 10.6552 1.0
5.3176 1.63 2000 6.4350 1.0
4.004 2.04 2500 4.2915 1.0
3.5239 2.44 3000 3.8151 1.0
3.4366 2.85 3500 3.5758 1.0
3.3874 3.26 4000 3.4953 1.0
3.3758 3.66 4500 3.4716 1.0
3.3647 4.07 5000 3.6072 1.0
3.3574 4.48 5500 3.5273 1.0
3.303 4.89 6000 3.4187 1.0000
3.0766 5.29 6500 2.9887 0.9993
2.7324 5.7 7000 2.5486 1.0010
2.3984 6.11 7500 2.2322 0.9850
2.1125 6.51 8000 1.9550 0.8958
1.8964 6.92 8500 1.7719 0.8172
1.7212 7.33 9000 1.5676 0.7549
1.5851 7.74 9500 1.4595 0.7091
1.49 8.14 10000 1.2293 0.6449
1.3883 8.55 10500 1.1185 0.6026
1.2862 8.96 11000 1.0546 0.5747
1.2146 9.36 11500 0.9808 0.5227
1.153 9.77 12000 0.9699 0.4917
1.0782 10.18 12500 0.9498 0.4544
1.0517 10.59 13000 0.9242 0.4206
1.0001 10.99 13500 0.8411 0.3910
0.9578 11.4 14000 0.8315 0.3708
0.9302 11.81 14500 0.8107 0.3521
0.8978 12.21 15000 0.7713 0.3351
0.8738 12.62 15500 0.7798 0.3253
0.8932 13.03 16000 0.7182 0.3117
0.8267 13.44 16500 0.7165 0.3054
0.8007 13.84 17000 0.6838 0.2973
0.7854 14.25 17500 0.6783 0.2913
0.7878 14.66 18000 0.6394 0.2851
0.7738 15.07 18500 0.5956 0.2771
0.7626 15.47 19000 0.6121 0.2708
0.7342 15.88 19500 0.5865 0.2661
0.7297 16.29 20000 0.5963 0.2646
0.7113 16.69 20500 0.5828 0.2601
0.7302 17.1 21000 0.5981 0.2601
0.721 17.51 21500 0.5881 0.2555
0.7089 17.92 22000 0.5841 0.2545
0.7059 18.32 22500 0.5794 0.2525
0.6969 18.73 23000 0.5910 0.2507
0.7065 19.14 23500 0.5707 0.2498
0.6869 19.54 24000 0.5736 0.2496
0.7308 19.95 24500 0.5701 0.2489

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3