metadata
license: cc-by-nc-4.0
base_model: nguyenvulebinh/wav2vec2-base-vi
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-base-vietnamese-VIVOS-CommonVoice-FOSD-Control-dataset-25e-epochs
results: []
wav2vec2-base-vietnamese-VIVOS-CommonVoice-FOSD-Control-dataset-25e-epochs
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vi on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3338
- Wer: 0.1833
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
16.1039 | 0.39 | 500 | 21.1164 | 1.0 |
10.5383 | 0.77 | 1000 | 15.8037 | 1.0 |
7.5435 | 1.16 | 1500 | 9.8785 | 1.0 |
5.1426 | 1.55 | 2000 | 5.9691 | 1.0 |
3.9112 | 1.93 | 2500 | 4.1400 | 1.0 |
3.5159 | 2.32 | 3000 | 3.6877 | 1.0 |
3.4056 | 2.71 | 3500 | 3.5166 | 1.0 |
3.384 | 3.09 | 4000 | 3.6170 | 1.0 |
3.3715 | 3.48 | 4500 | 3.5045 | 1.0 |
3.373 | 3.87 | 5000 | 3.4859 | 1.0 |
3.3539 | 4.25 | 5500 | 3.4843 | 1.0 |
3.3063 | 4.64 | 6000 | 3.3596 | 1.0 |
3.0749 | 5.03 | 6500 | 2.8515 | 0.9994 |
2.6888 | 5.41 | 7000 | 2.4817 | 1.0000 |
2.3404 | 5.8 | 7500 | 2.0490 | 0.9815 |
2.0588 | 6.19 | 8000 | 1.7986 | 0.9288 |
1.8428 | 6.57 | 8500 | 1.4945 | 0.8332 |
1.686 | 6.96 | 9000 | 1.3796 | 0.7640 |
1.5399 | 7.35 | 9500 | 1.2362 | 0.6927 |
1.4374 | 7.73 | 10000 | 1.1130 | 0.6320 |
1.3281 | 8.12 | 10500 | 1.0058 | 0.5705 |
1.2308 | 8.51 | 11000 | 0.8888 | 0.5109 |
1.1405 | 8.89 | 11500 | 0.8438 | 0.4524 |
1.0647 | 9.28 | 12000 | 0.7767 | 0.4208 |
1.0104 | 9.67 | 12500 | 0.7385 | 0.3777 |
0.9629 | 10.05 | 13000 | 0.6731 | 0.3505 |
0.9045 | 10.44 | 13500 | 0.6295 | 0.3317 |
0.8573 | 10.83 | 14000 | 0.6071 | 0.3115 |
0.8443 | 11.21 | 14500 | 0.5895 | 0.2984 |
0.7915 | 11.6 | 15000 | 0.5828 | 0.2823 |
0.7965 | 11.99 | 15500 | 0.5552 | 0.2714 |
0.7738 | 12.37 | 16000 | 0.5100 | 0.2605 |
0.7326 | 12.76 | 16500 | 0.4884 | 0.2499 |
0.7007 | 13.15 | 17000 | 0.4799 | 0.2402 |
0.6997 | 13.53 | 17500 | 0.4647 | 0.2331 |
0.68 | 13.92 | 18000 | 0.4469 | 0.2271 |
0.6707 | 14.31 | 18500 | 0.4261 | 0.2231 |
0.6557 | 14.69 | 19000 | 0.4145 | 0.2164 |
0.6509 | 15.08 | 19500 | 0.4010 | 0.2120 |
0.6649 | 15.47 | 20000 | 0.4038 | 0.2092 |
0.6191 | 15.85 | 20500 | 0.3926 | 0.2064 |
0.6385 | 16.24 | 21000 | 0.3882 | 0.2024 |
0.6222 | 16.63 | 21500 | 0.3874 | 0.2016 |
0.5792 | 17.01 | 22000 | 0.3873 | 0.2023 |
0.5775 | 17.4 | 22500 | 0.3757 | 0.1975 |
0.5647 | 17.79 | 23000 | 0.3626 | 0.1964 |
0.5723 | 18.17 | 23500 | 0.3574 | 0.1958 |
0.5573 | 18.56 | 24000 | 0.3530 | 0.1960 |
0.5813 | 18.95 | 24500 | 0.3541 | 0.1933 |
0.563 | 19.33 | 25000 | 0.3455 | 0.1926 |
0.5402 | 19.72 | 25500 | 0.3483 | 0.1910 |
0.5578 | 20.11 | 26000 | 0.3516 | 0.1915 |
0.5456 | 20.49 | 26500 | 0.3477 | 0.1878 |
0.5453 | 20.88 | 27000 | 0.3391 | 0.1882 |
0.5265 | 21.27 | 27500 | 0.3386 | 0.1869 |
0.557 | 21.66 | 28000 | 0.3388 | 0.1864 |
0.5526 | 22.04 | 28500 | 0.3373 | 0.1864 |
0.5284 | 22.43 | 29000 | 0.3352 | 0.1854 |
0.5351 | 22.82 | 29500 | 0.3373 | 0.1850 |
0.5775 | 23.2 | 30000 | 0.3382 | 0.1848 |
0.5292 | 23.59 | 30500 | 0.3371 | 0.1843 |
0.52 | 23.98 | 31000 | 0.3338 | 0.1839 |
0.5372 | 24.36 | 31500 | 0.3337 | 0.1829 |
0.5167 | 24.75 | 32000 | 0.3338 | 0.1833 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3