Edit model card

fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g2.0-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0217
  • Wer: 0.1027

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
1087.6127 0.94 50 544.0147 15.9400
883.6459 1.89 100 263.3972 1.2869
154.8555 2.83 150 46.7449 1.0
56.6812 3.77 200 42.9581 1.0
54.5616 4.72 250 41.7305 1.0
52.6183 5.66 300 40.4653 1.0
51.0696 6.6 350 39.4718 1.0
49.2717 7.55 400 38.6904 1.0
48.4209 8.49 450 38.1454 1.0
48.9467 9.43 500 37.8410 1.0
48.2942 10.38 550 37.5333 1.0
48.4695 11.32 600 37.3824 1.0
43.8977 12.26 650 27.3106 0.7221
28.474 13.21 700 13.0357 0.3541
16.5311 14.15 750 7.8864 0.2232
11.7013 15.09 800 5.9173 0.1789
9.495 16.04 850 4.9400 0.1665
8.0993 16.98 900 4.2435 0.1529
7.0221 17.92 950 3.7539 0.1342
6.4537 18.87 1000 3.5368 0.1375
6.2301 19.81 1050 3.5333 0.1416
5.7669 20.75 1100 3.1940 0.1263
5.4415 21.7 1150 2.9780 0.1260
5.1487 22.64 1200 2.8402 0.1238
4.7512 23.58 1250 2.7171 0.1174
4.4345 24.53 1300 2.6491 0.1089
4.5031 25.47 1350 2.5340 0.1143
4.1201 26.42 1400 2.5977 0.1204
4.1617 27.36 1450 2.4961 0.1209
3.8342 28.3 1500 2.3904 0.1123
3.8148 29.25 1550 2.4308 0.1169
3.6714 30.19 1600 2.3569 0.1108
3.4776 31.13 1650 2.3612 0.1158
3.5231 32.08 1700 2.2809 0.1065
3.396 33.02 1750 2.2409 0.1043
3.2426 33.96 1800 2.2213 0.1009
3.0984 34.91 1850 2.2880 0.1131
3.1632 35.85 1900 2.3351 0.1122
3.1377 36.79 1950 2.2338 0.1046
2.9159 37.74 2000 2.2138 0.1015
2.9623 38.68 2050 2.1678 0.1003
2.8043 39.62 2100 2.1545 0.1056
2.7835 40.57 2150 2.1060 0.1025
2.6223 41.51 2200 2.1277 0.1041
2.6276 42.45 2250 2.1640 0.1099
2.5713 43.4 2300 2.1470 0.1088
2.5732 44.34 2350 2.1019 0.1064
2.5823 45.28 2400 2.0942 0.1104
2.401 46.23 2450 2.1207 0.1038
2.3553 47.17 2500 2.0486 0.1027
2.2568 48.11 2550 2.0719 0.1019
2.3041 49.06 2600 2.1119 0.1054
2.1967 50.0 2650 2.0949 0.1047
2.1611 50.94 2700 2.0584 0.0992
2.2721 51.89 2750 2.0706 0.1034
1.9844 52.83 2800 2.0582 0.1079
2.1597 53.77 2850 2.0510 0.1054
2.0874 54.72 2900 2.0830 0.1075
1.968 55.66 2950 2.0899 0.1078
1.9349 56.6 3000 2.0793 0.1022
2.0729 57.55 3050 2.0744 0.1026
2.0062 58.49 3100 2.0859 0.1083
1.9635 59.43 3150 2.0448 0.1011
1.9711 60.38 3200 2.1105 0.1045
1.7753 61.32 3250 2.0405 0.1004
1.918 62.26 3300 2.0738 0.1047
1.737 63.21 3350 2.0535 0.1060
1.861 64.15 3400 2.0935 0.1029
1.7855 65.09 3450 2.0630 0.1041
1.7638 66.04 3500 2.0319 0.1058
1.7905 66.98 3550 2.0325 0.1049
1.8109 67.92 3600 2.0527 0.1073
1.7491 68.87 3650 2.0453 0.1074
1.778 69.81 3700 2.0238 0.1034
1.7323 70.75 3750 2.0391 0.1078
1.7734 71.7 3800 2.0206 0.1061
1.6741 72.64 3850 2.0337 0.1057
1.6221 73.58 3900 2.0290 0.1068
1.5371 74.53 3950 2.0296 0.1039
1.7238 75.47 4000 2.0393 0.1063
1.6034 76.42 4050 2.0171 0.1053
1.6784 77.36 4100 2.0421 0.1073
1.6036 78.3 4150 2.0327 0.1049
1.5265 79.25 4200 2.0292 0.1048
1.6041 80.19 4250 2.0262 0.1029
1.5758 81.13 4300 2.0568 0.1063
1.5859 82.08 4350 2.0255 0.1044
1.5839 83.02 4400 2.0236 0.1028
1.5533 83.96 4450 2.0242 0.1039
1.6382 84.91 4500 2.0066 0.1049
1.5394 85.85 4550 2.0174 0.1039
1.6017 86.79 4600 2.0138 0.1014
1.567 87.74 4650 2.0214 0.1049
1.5778 88.68 4700 2.0198 0.1038
1.5495 89.62 4750 2.0208 0.1042
1.4151 90.57 4800 2.0247 0.1039
1.6654 91.51 4850 2.0195 0.1036
1.4209 92.45 4900 2.0172 0.1037
1.6416 93.4 4950 2.0206 0.1031
1.5105 94.34 5000 2.0220 0.1034
1.4753 95.28 5050 2.0204 0.1030
1.5578 96.23 5100 2.0227 0.1034
1.5149 97.17 5150 2.0222 0.1031
1.557 98.11 5200 2.0224 0.1029
1.5528 99.06 5250 2.0216 0.1027
1.5551 100.0 5300 2.0217 0.1027

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g2.0-0.05_10_0.004_40

Finetuned
(56)
this model