fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g2.0-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0217
- Wer: 0.1027
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1087.6127 | 0.94 | 50 | 544.0147 | 15.9400 |
883.6459 | 1.89 | 100 | 263.3972 | 1.2869 |
154.8555 | 2.83 | 150 | 46.7449 | 1.0 |
56.6812 | 3.77 | 200 | 42.9581 | 1.0 |
54.5616 | 4.72 | 250 | 41.7305 | 1.0 |
52.6183 | 5.66 | 300 | 40.4653 | 1.0 |
51.0696 | 6.6 | 350 | 39.4718 | 1.0 |
49.2717 | 7.55 | 400 | 38.6904 | 1.0 |
48.4209 | 8.49 | 450 | 38.1454 | 1.0 |
48.9467 | 9.43 | 500 | 37.8410 | 1.0 |
48.2942 | 10.38 | 550 | 37.5333 | 1.0 |
48.4695 | 11.32 | 600 | 37.3824 | 1.0 |
43.8977 | 12.26 | 650 | 27.3106 | 0.7221 |
28.474 | 13.21 | 700 | 13.0357 | 0.3541 |
16.5311 | 14.15 | 750 | 7.8864 | 0.2232 |
11.7013 | 15.09 | 800 | 5.9173 | 0.1789 |
9.495 | 16.04 | 850 | 4.9400 | 0.1665 |
8.0993 | 16.98 | 900 | 4.2435 | 0.1529 |
7.0221 | 17.92 | 950 | 3.7539 | 0.1342 |
6.4537 | 18.87 | 1000 | 3.5368 | 0.1375 |
6.2301 | 19.81 | 1050 | 3.5333 | 0.1416 |
5.7669 | 20.75 | 1100 | 3.1940 | 0.1263 |
5.4415 | 21.7 | 1150 | 2.9780 | 0.1260 |
5.1487 | 22.64 | 1200 | 2.8402 | 0.1238 |
4.7512 | 23.58 | 1250 | 2.7171 | 0.1174 |
4.4345 | 24.53 | 1300 | 2.6491 | 0.1089 |
4.5031 | 25.47 | 1350 | 2.5340 | 0.1143 |
4.1201 | 26.42 | 1400 | 2.5977 | 0.1204 |
4.1617 | 27.36 | 1450 | 2.4961 | 0.1209 |
3.8342 | 28.3 | 1500 | 2.3904 | 0.1123 |
3.8148 | 29.25 | 1550 | 2.4308 | 0.1169 |
3.6714 | 30.19 | 1600 | 2.3569 | 0.1108 |
3.4776 | 31.13 | 1650 | 2.3612 | 0.1158 |
3.5231 | 32.08 | 1700 | 2.2809 | 0.1065 |
3.396 | 33.02 | 1750 | 2.2409 | 0.1043 |
3.2426 | 33.96 | 1800 | 2.2213 | 0.1009 |
3.0984 | 34.91 | 1850 | 2.2880 | 0.1131 |
3.1632 | 35.85 | 1900 | 2.3351 | 0.1122 |
3.1377 | 36.79 | 1950 | 2.2338 | 0.1046 |
2.9159 | 37.74 | 2000 | 2.2138 | 0.1015 |
2.9623 | 38.68 | 2050 | 2.1678 | 0.1003 |
2.8043 | 39.62 | 2100 | 2.1545 | 0.1056 |
2.7835 | 40.57 | 2150 | 2.1060 | 0.1025 |
2.6223 | 41.51 | 2200 | 2.1277 | 0.1041 |
2.6276 | 42.45 | 2250 | 2.1640 | 0.1099 |
2.5713 | 43.4 | 2300 | 2.1470 | 0.1088 |
2.5732 | 44.34 | 2350 | 2.1019 | 0.1064 |
2.5823 | 45.28 | 2400 | 2.0942 | 0.1104 |
2.401 | 46.23 | 2450 | 2.1207 | 0.1038 |
2.3553 | 47.17 | 2500 | 2.0486 | 0.1027 |
2.2568 | 48.11 | 2550 | 2.0719 | 0.1019 |
2.3041 | 49.06 | 2600 | 2.1119 | 0.1054 |
2.1967 | 50.0 | 2650 | 2.0949 | 0.1047 |
2.1611 | 50.94 | 2700 | 2.0584 | 0.0992 |
2.2721 | 51.89 | 2750 | 2.0706 | 0.1034 |
1.9844 | 52.83 | 2800 | 2.0582 | 0.1079 |
2.1597 | 53.77 | 2850 | 2.0510 | 0.1054 |
2.0874 | 54.72 | 2900 | 2.0830 | 0.1075 |
1.968 | 55.66 | 2950 | 2.0899 | 0.1078 |
1.9349 | 56.6 | 3000 | 2.0793 | 0.1022 |
2.0729 | 57.55 | 3050 | 2.0744 | 0.1026 |
2.0062 | 58.49 | 3100 | 2.0859 | 0.1083 |
1.9635 | 59.43 | 3150 | 2.0448 | 0.1011 |
1.9711 | 60.38 | 3200 | 2.1105 | 0.1045 |
1.7753 | 61.32 | 3250 | 2.0405 | 0.1004 |
1.918 | 62.26 | 3300 | 2.0738 | 0.1047 |
1.737 | 63.21 | 3350 | 2.0535 | 0.1060 |
1.861 | 64.15 | 3400 | 2.0935 | 0.1029 |
1.7855 | 65.09 | 3450 | 2.0630 | 0.1041 |
1.7638 | 66.04 | 3500 | 2.0319 | 0.1058 |
1.7905 | 66.98 | 3550 | 2.0325 | 0.1049 |
1.8109 | 67.92 | 3600 | 2.0527 | 0.1073 |
1.7491 | 68.87 | 3650 | 2.0453 | 0.1074 |
1.778 | 69.81 | 3700 | 2.0238 | 0.1034 |
1.7323 | 70.75 | 3750 | 2.0391 | 0.1078 |
1.7734 | 71.7 | 3800 | 2.0206 | 0.1061 |
1.6741 | 72.64 | 3850 | 2.0337 | 0.1057 |
1.6221 | 73.58 | 3900 | 2.0290 | 0.1068 |
1.5371 | 74.53 | 3950 | 2.0296 | 0.1039 |
1.7238 | 75.47 | 4000 | 2.0393 | 0.1063 |
1.6034 | 76.42 | 4050 | 2.0171 | 0.1053 |
1.6784 | 77.36 | 4100 | 2.0421 | 0.1073 |
1.6036 | 78.3 | 4150 | 2.0327 | 0.1049 |
1.5265 | 79.25 | 4200 | 2.0292 | 0.1048 |
1.6041 | 80.19 | 4250 | 2.0262 | 0.1029 |
1.5758 | 81.13 | 4300 | 2.0568 | 0.1063 |
1.5859 | 82.08 | 4350 | 2.0255 | 0.1044 |
1.5839 | 83.02 | 4400 | 2.0236 | 0.1028 |
1.5533 | 83.96 | 4450 | 2.0242 | 0.1039 |
1.6382 | 84.91 | 4500 | 2.0066 | 0.1049 |
1.5394 | 85.85 | 4550 | 2.0174 | 0.1039 |
1.6017 | 86.79 | 4600 | 2.0138 | 0.1014 |
1.567 | 87.74 | 4650 | 2.0214 | 0.1049 |
1.5778 | 88.68 | 4700 | 2.0198 | 0.1038 |
1.5495 | 89.62 | 4750 | 2.0208 | 0.1042 |
1.4151 | 90.57 | 4800 | 2.0247 | 0.1039 |
1.6654 | 91.51 | 4850 | 2.0195 | 0.1036 |
1.4209 | 92.45 | 4900 | 2.0172 | 0.1037 |
1.6416 | 93.4 | 4950 | 2.0206 | 0.1031 |
1.5105 | 94.34 | 5000 | 2.0220 | 0.1034 |
1.4753 | 95.28 | 5050 | 2.0204 | 0.1030 |
1.5578 | 96.23 | 5100 | 2.0227 | 0.1034 |
1.5149 | 97.17 | 5150 | 2.0222 | 0.1031 |
1.557 | 98.11 | 5200 | 2.0224 | 0.1029 |
1.5528 | 99.06 | 5250 | 2.0216 | 0.1027 |
1.5551 | 100.0 | 5300 | 2.0217 | 0.1027 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 0
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.5_g2.0-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h