See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
bf16: false
dataset_prepared_path: null
datasets:
- ds_tipe: json
path: pubmed_continual_pretraning_dataset.jsonl
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: false
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules: null
lr_scheduler: cosine
micro_batch_size: 8
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: paged_adamw_32bit
output_dir: ./outputs/qlora-out
pad_to_sequence_len: false
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 4096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
outputs/qlora-out
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7613
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.768 | 0.0336 | 1 | 1.8649 |
1.8084 | 0.2689 | 8 | 1.8317 |
1.633 | 0.5378 | 16 | 1.7833 |
1.6737 | 0.8067 | 24 | 1.7644 |
1.6722 | 1.0756 | 32 | 1.7601 |
1.7162 | 1.3445 | 40 | 1.7571 |
1.7046 | 1.6134 | 48 | 1.7558 |
1.6714 | 1.8824 | 56 | 1.7564 |
1.6249 | 2.1513 | 64 | 1.7566 |
1.5604 | 2.4202 | 72 | 1.7599 |
1.7003 | 2.6891 | 80 | 1.7614 |
1.7115 | 2.9580 | 88 | 1.7605 |
1.5937 | 3.2269 | 96 | 1.7609 |
1.655 | 3.4958 | 104 | 1.7612 |
1.5829 | 3.7647 | 112 | 1.7613 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5