tsavage68's picture
End of training
9508993 verified
|
raw
history blame
5.81 kB
metadata
library_name: transformers
license: apache-2.0
base_model: tsavage68/IE_M2_1000steps_1e7rate_SFT
tags:
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: IE_M2_1000steps_1e7rate_01beta_cSFTDPO
    results: []

IE_M2_1000steps_1e7rate_01beta_cSFTDPO

This model is a fine-tuned version of tsavage68/IE_M2_1000steps_1e7rate_SFT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3743
  • Rewards/chosen: -0.3291
  • Rewards/rejected: -6.1017
  • Rewards/accuracies: 0.4600
  • Rewards/margins: 5.7727
  • Logps/rejected: -102.0393
  • Logps/chosen: -45.4965
  • Logits/rejected: -2.8684
  • Logits/chosen: -2.8050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-07
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.558 0.4 50 0.4553 -0.0349 -0.8002 0.4600 0.7653 -49.0237 -42.5545 -2.9038 -2.8422
0.3818 0.8 100 0.3747 -0.1730 -3.5887 0.4600 3.4157 -76.9091 -43.9359 -2.8759 -2.8145
0.3123 1.2 150 0.3744 -0.2403 -4.3676 0.4600 4.1273 -84.6980 -44.6088 -2.8742 -2.8132
0.364 1.6 200 0.3744 -0.2016 -4.5800 0.4600 4.3784 -86.8216 -44.2215 -2.8745 -2.8130
0.4332 2.0 250 0.3743 -0.2684 -4.8731 0.4600 4.6046 -89.7525 -44.8898 -2.8737 -2.8118
0.3986 2.4 300 0.3743 -0.1931 -5.0362 0.4600 4.8430 -91.3835 -44.1367 -2.8747 -2.8125
0.3986 2.8 350 0.3743 -0.1846 -5.1505 0.4600 4.9659 -92.5268 -44.0517 -2.8745 -2.8120
0.4506 3.2 400 0.3743 -0.1881 -5.2928 0.4600 5.1047 -93.9497 -44.0868 -2.8736 -2.8107
0.4505 3.6 450 0.3743 -0.2250 -5.5587 0.4600 5.3337 -96.6092 -44.4557 -2.8724 -2.8094
0.4332 4.0 500 0.3743 -0.4284 -5.9879 0.4600 5.5595 -100.9007 -46.4892 -2.8698 -2.8066
0.3292 4.4 550 0.3743 -0.3669 -5.9892 0.4600 5.6223 -100.9135 -45.8741 -2.8695 -2.8063
0.3639 4.8 600 0.3743 -0.2855 -5.9594 0.4600 5.6739 -100.6163 -45.0607 -2.8699 -2.8066
0.4505 5.2 650 0.3743 -0.3591 -6.0896 0.4600 5.7305 -101.9183 -45.7970 -2.8685 -2.8052
0.4505 5.6 700 0.3743 -0.3292 -6.0868 0.4600 5.7576 -101.8900 -45.4977 -2.8687 -2.8054
0.3639 6.0 750 0.3743 -0.3284 -6.1008 0.4600 5.7724 -102.0299 -45.4898 -2.8683 -2.8049
0.2426 6.4 800 0.3743 -0.3283 -6.0983 0.4600 5.7700 -102.0044 -45.4881 -2.8684 -2.8051
0.5025 6.8 850 0.3743 -0.3251 -6.0987 0.4600 5.7737 -102.0092 -45.4562 -2.8685 -2.8051
0.3119 7.2 900 0.3743 -0.3297 -6.1009 0.4600 5.7712 -102.0308 -45.5028 -2.8684 -2.8050
0.3466 7.6 950 0.3743 -0.3291 -6.1017 0.4600 5.7727 -102.0393 -45.4965 -2.8684 -2.8050
0.3812 8.0 1000 0.3743 -0.3291 -6.1017 0.4600 5.7727 -102.0393 -45.4965 -2.8684 -2.8050

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.0.0+cu117
  • Datasets 3.0.0
  • Tokenizers 0.19.1