|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import argparse |
|
import json |
|
import logging |
|
import os |
|
import random |
|
import wandb |
|
|
|
import numpy as np |
|
import torch |
|
from torch.optim import AdamW |
|
from torch.utils.data import DataLoader |
|
from torch.utils.data import RandomSampler |
|
from torch.utils.data import SequentialSampler |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.utils.tensorboard import SummaryWriter |
|
from tqdm import tqdm |
|
from tqdm import trange |
|
from transformers import DebertaV2Config |
|
from transformers import DebertaV2ForMaskedLM |
|
from transformers import DebertaV2Tokenizer |
|
from transformers import RobertaConfig |
|
from transformers import RobertaForMaskedLM |
|
from transformers import RobertaTokenizer |
|
from transformers import get_linear_schedule_with_warmup |
|
|
|
from data_utils import accuracy |
|
from data_utils import convert_examples_to_features |
|
from data_utils import myprocessors |
|
|
|
from evaluate_DeBERTa import eval_tasks |
|
from evaluate_DeBERTa import main as evaluate_main |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
from transformers import MODEL_WITH_LM_HEAD_MAPPING |
|
|
|
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
MODEL_CLASSES = { |
|
'roberta-mlm': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), |
|
'deberta-mlm': (DebertaV2Config, DebertaV2ForMaskedLM, DebertaV2Tokenizer) |
|
} |
|
|
|
|
|
class MyDataset(torch.utils.data.Dataset): |
|
|
|
def __init__(self, data, pad_token, mask_token, max_words_to_mask): |
|
self.data = data |
|
self.pad_token = pad_token |
|
self.mask_token = mask_token |
|
self.max_words_to_mask = max_words_to_mask |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
sample = self.data[idx] |
|
return sample, self.pad_token, self.mask_token, self.max_words_to_mask |
|
|
|
|
|
def mCollateFn(batch): |
|
batch_input_ids = [] |
|
batch_input_mask = [] |
|
batch_input_labels = [] |
|
batch_label_ids = [] |
|
features = [b[0] for b in batch] |
|
pad_token = batch[0][1] |
|
mask_token = batch[0][2] |
|
MAX_WORDS_TO_MASK = batch[0][3] |
|
max_len = max([len(cand) for f in features for cand in f[0]]) |
|
for f in features: |
|
batch_input_ids.append([]) |
|
batch_input_mask.append([]) |
|
batch_input_labels.append([]) |
|
batch_label_ids.append(f[2]) |
|
for i in range(len(f[0])): |
|
masked_sequences = [] |
|
masked_labels = [] |
|
this_att_mask = [] |
|
sequence = f[0][i] + [pad_token] * (max_len - len(f[0][i])) |
|
label_sequence = f[1][i] + [-100] * (max_len - len(f[1][i])) |
|
valid_indices = [l_i for l_i, l in enumerate(label_sequence) if l != -100] |
|
if len(valid_indices) > MAX_WORDS_TO_MASK: |
|
rm_indices = random.sample(valid_indices, (len(valid_indices) - MAX_WORDS_TO_MASK)) |
|
label_sequence = [-100 if l_i in rm_indices else l for l_i, l in enumerate(label_sequence)] |
|
for j, t in enumerate(label_sequence): |
|
if t == -100: |
|
continue |
|
masked_sequences.append(sequence) |
|
masked_labels.append([-100] * max_len) |
|
else: |
|
masked_sequences.append(sequence[:j] + [mask_token] + sequence[j + 1:]) |
|
masked_labels.append([-100] * j + [sequence[j]] + [-100] * (max_len - j - 1)) |
|
this_att_mask.append([1] * len(f[0][i]) + [0] * (max_len - len(f[0][i]))) |
|
batch_input_ids[-1].append(torch.tensor(masked_sequences, dtype=torch.long)) |
|
batch_input_mask[-1].append(torch.tensor(this_att_mask, dtype=torch.long)) |
|
batch_input_labels[-1].append(torch.tensor(masked_labels, dtype=torch.long)) |
|
return batch_input_ids, batch_input_mask, batch_input_labels, torch.tensor(batch_label_ids, dtype=torch.long) |
|
|
|
|
|
def set_seed(args): |
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
if args.n_gpu > 0: |
|
torch.cuda.manual_seed_all(args.seed) |
|
|
|
|
|
def count_parameters(model): |
|
return sum(p.numel() for p in model.parameters() if p.requires_grad) |
|
|
|
|
|
def train(args, train_dataset, model, tokenizer, eval_dataset): |
|
""" Train the model """ |
|
if args.local_rank in [-1, 0]: |
|
tb_writer = SummaryWriter(os.path.join(args.output_dir, 'runs')) |
|
|
|
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) |
|
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, |
|
collate_fn=mCollateFn) |
|
|
|
if args.max_steps > 0: |
|
t_total = args.max_steps |
|
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 |
|
else: |
|
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs |
|
|
|
|
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
'weight_decay': args.weight_decay}, |
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
] |
|
|
|
warmup_steps = args.warmup_steps if args.warmup_steps != 0 else int(args.warmup_proportion * t_total) |
|
logger.info("warm up steps = %d", warmup_steps) |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon, betas=(0.9, 0.98)) |
|
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) |
|
|
|
if args.fp16: |
|
try: |
|
from apex import amp |
|
except ImportError: |
|
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") |
|
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) |
|
|
|
|
|
if args.n_gpu > 1: |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if args.local_rank != -1: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], |
|
output_device=args.local_rank, |
|
find_unused_parameters=True) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", len(train_dataset)) |
|
logger.info(" Num Epochs = %d", args.num_train_epochs) |
|
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) |
|
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", |
|
args.train_batch_size * args.gradient_accumulation_steps * ( |
|
torch.distributed.get_world_size() if args.local_rank != -1 else 1)) |
|
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) |
|
logger.info(" Total optimization steps = %d", t_total) |
|
|
|
global_step = 0 |
|
tr_loss, logging_loss = 0.0, 0.0 |
|
model.zero_grad() |
|
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) |
|
set_seed(args) |
|
curr_best = 0.0 |
|
CE = torch.nn.CrossEntropyLoss(reduction='none') |
|
loss_fct = torch.nn.MultiMarginLoss(margin=args.margin) |
|
for _ in train_iterator: |
|
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) |
|
for step, batch in tqdm(enumerate(epoch_iterator), desc=f"Train Epoch {_}"): |
|
model.train() |
|
num_cand = len(batch[0][0]) |
|
choice_loss = [] |
|
choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample]) |
|
choice_seq_lens = np.cumsum(choice_seq_lens) |
|
input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device) |
|
att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device) |
|
input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device) |
|
|
|
if len(input_ids) < args.max_sequence_per_time: |
|
inputs = {'input_ids': input_ids, |
|
'attention_mask': att_mask} |
|
outputs = model(**inputs) |
|
ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1)) |
|
ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1) |
|
else: |
|
ce_loss = [] |
|
for chunk in range(0, len(input_ids), args.max_sequence_per_time): |
|
inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time], |
|
'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]} |
|
outputs = model(**inputs) |
|
tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), |
|
input_labels[chunk:chunk + args.max_sequence_per_time].view(-1)) |
|
tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1) |
|
ce_loss.append(tmp_ce_loss) |
|
ce_loss = torch.cat(ce_loss, dim=0) |
|
|
|
for c_i in range(len(choice_seq_lens) - 1): |
|
start = choice_seq_lens[c_i] |
|
end = choice_seq_lens[c_i + 1] |
|
choice_loss.append(-ce_loss[start:end].sum() / (end - start)) |
|
|
|
choice_loss = torch.stack(choice_loss) |
|
choice_loss = choice_loss.view(-1, num_cand) |
|
loss = loss_fct(choice_loss, batch[3].to(args.device)) |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
|
|
if args.fp16: |
|
with amp.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
loss.backward() |
|
|
|
tr_loss += loss.item() |
|
|
|
if (step + 1) % args.gradient_accumulation_steps == 0: |
|
optimizer.step() |
|
scheduler.step() |
|
model.zero_grad() |
|
global_step += 1 |
|
|
|
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: |
|
|
|
tb_writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step) |
|
tb_writer.add_scalar('loss', (tr_loss - logging_loss) / args.logging_steps, global_step) |
|
tb_writer.add_scalar('Batch_loss', loss.item() * args.gradient_accumulation_steps, global_step) |
|
logger.info(" global_step = %s, average loss = %s", global_step, |
|
(tr_loss - logging_loss) / args.logging_steps) |
|
wandb.log({"train/loss":loss.item()}) |
|
logging_loss = tr_loss |
|
|
|
if args.local_rank == -1 and args.evaluate_during_training and global_step % args.save_steps == 0: |
|
torch.cuda.empty_cache() |
|
results = evaluate(args, model, tokenizer, eval_dataset) |
|
wandb.log({"eval/"+k:v for k,v in results.items()}) |
|
for key, value in results.items(): |
|
tb_writer.add_scalar('eval_{}'.format(key), value, global_step) |
|
if results['acc'] > curr_best: |
|
curr_best = results['acc'] |
|
print("At iteration {}, best acc is {}".format(global_step, curr_best)) |
|
|
|
output_dir = args.output_dir |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, |
|
'module') else model |
|
model_to_save.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
torch.save(args, os.path.join(output_dir, 'training_args.bin')) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
|
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
epoch_iterator.close() |
|
break |
|
if args.max_steps > 0 and global_step > args.max_steps: |
|
train_iterator.close() |
|
break |
|
results = evaluate(args, model, tokenizer, eval_dataset) |
|
for key, value in results.items(): |
|
tb_writer.add_scalar('eval_{}'.format(key), value, global_step) |
|
if results['acc'] > curr_best: |
|
curr_best = results['acc'] |
|
|
|
output_dir = args.output_dir |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
model_to_save = model.module if hasattr(model, |
|
'module') else model |
|
model_to_save.save_pretrained(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
torch.save(args, os.path.join(output_dir, 'training_args.bin')) |
|
logger.info("Saving model checkpoint to %s", output_dir) |
|
if args.local_rank in [-1, 0]: |
|
tb_writer.close() |
|
return global_step, tr_loss / global_step |
|
|
|
|
|
def save_logits(logits_all, filename): |
|
with open(filename, "w") as f: |
|
for i in range(len(logits_all)): |
|
for j in range(len(logits_all[i])): |
|
f.write(str(logits_all[i][j])) |
|
if j == len(logits_all[i]) - 1: |
|
f.write("\n") |
|
else: |
|
f.write(" ") |
|
|
|
|
|
def evaluate(args, model, tokenizer, eval_dataset): |
|
results = {} |
|
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: |
|
os.makedirs(args.output_dir) |
|
|
|
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) |
|
|
|
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) |
|
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, |
|
collate_fn=mCollateFn) |
|
|
|
|
|
logger.info("***** Running evaluation *****") |
|
logger.info(" Num examples = %d", len(eval_dataset)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
CE = torch.nn.CrossEntropyLoss(reduction='none') |
|
preds = [] |
|
out_label_ids = [] |
|
for batch in tqdm(eval_dataloader, desc="Evaluating"): |
|
model.eval() |
|
with torch.no_grad(): |
|
num_cand = len(batch[0][0]) |
|
choice_loss = [] |
|
choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample]) |
|
choice_seq_lens = np.cumsum(choice_seq_lens) |
|
input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device) |
|
att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device) |
|
input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device) |
|
if len(input_ids) < args.max_sequence_per_time: |
|
inputs = {'input_ids': input_ids, |
|
'attention_mask': att_mask} |
|
outputs = model(**inputs) |
|
ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1)) |
|
ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1) |
|
else: |
|
ce_loss = [] |
|
for chunk in range(0, len(input_ids), args.max_sequence_per_time): |
|
inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time], |
|
'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]} |
|
outputs = model(**inputs) |
|
tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), |
|
input_labels[chunk:chunk + args.max_sequence_per_time].view(-1)) |
|
tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1) |
|
ce_loss.append(tmp_ce_loss) |
|
ce_loss = torch.cat(ce_loss, dim=0) |
|
for c_i in range(len(choice_seq_lens) - 1): |
|
start = choice_seq_lens[c_i] |
|
end = choice_seq_lens[c_i + 1] |
|
choice_loss.append(-ce_loss[start:end].sum() / (end - start)) |
|
choice_loss = torch.stack(choice_loss) |
|
choice_loss = choice_loss.view(-1, num_cand) |
|
preds.append(choice_loss) |
|
out_label_ids.append(batch[3].numpy()) |
|
preds = torch.cat(preds, dim=0).cpu().numpy() |
|
save_logits(preds.tolist(), os.path.join(args.output_dir, args.logits_file)) |
|
preds = np.argmax(preds, axis=1) |
|
result = accuracy(preds, np.concatenate(out_label_ids, axis=0)) |
|
results.update(result) |
|
output_eval_file = os.path.join(args.output_dir, args.results_file) |
|
with open(output_eval_file, "w") as writer: |
|
logger.info("***** Eval results *****") |
|
for key in sorted(result.keys()): |
|
print("%s = %s\n" % (key, str(result[key]))) |
|
logger.info(" %s = %s", key, str(result[key])) |
|
writer.write("%s = %s\n" % (key, str(result[key]))) |
|
return results |
|
|
|
|
|
def write_data(filename, data): |
|
with open(filename, 'w') as fout: |
|
for sample in data: |
|
fout.write(json.dumps(sample)) |
|
fout.write('\n') |
|
|
|
|
|
def load_and_cache_examples(args, task, tokenizer, evaluate=False): |
|
if args.local_rank not in [-1, 0] and not evaluate: |
|
torch.distributed.barrier() |
|
processor = myprocessors[task](args) |
|
cached_features_file = os.path.join(args.output_dir, 'cached_{}_{}_{}_{}'.format( |
|
'dev' if evaluate else 'train', |
|
str(args.model_type), |
|
str(args.max_seq_length), |
|
str(task))) |
|
if os.path.exists(cached_features_file): |
|
features = torch.load(cached_features_file) |
|
else: |
|
examples = processor.get_dev_examples() if evaluate else processor.get_train_examples() |
|
features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length) |
|
|
|
torch.save(features, cached_features_file) |
|
if args.local_rank == 0 and not evaluate: |
|
torch.distributed.barrier() |
|
print('max_words_to_mask is %s for pretraining tasks %s' % (args.max_words_to_mask, task)) |
|
return MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--train_file", default=None, type=str, required=True, |
|
help="The train file name") |
|
parser.add_argument("--dev_file", default=None, type=str, required=True, |
|
help="The dev file name") |
|
parser.add_argument("--model_type", default=None, type=str, required=True, |
|
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) |
|
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, |
|
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( |
|
MODEL_TYPES)) |
|
parser.add_argument("--config_name", default="", type=str, |
|
help="Pretrained config name or path if not the same as model_name") |
|
parser.add_argument("--tokenizer_name", default="", type=str, |
|
help="Pretrained tokenizer name or path if not the same as model_name") |
|
parser.add_argument("--cache_dir", default=".cache", type=str, |
|
help="Where do you want to store the pre-trained models downloaded") |
|
parser.add_argument("--task_name", default=None, type=str, required=True, |
|
help="The name of the task to train selected in the list: " + ", ".join(myprocessors.keys())) |
|
parser.add_argument("--output_dir", default=None, type=str, required=True, |
|
help="The output directory where the model predictions and checkpoints will be written.") |
|
|
|
|
|
parser.add_argument("--second_train_file", default=None, type=str, |
|
help="Used when combining ATOMIC and CWWV") |
|
parser.add_argument("--second_dev_file", default=None, type=str, |
|
help="Used when combining ATOMIC and CWWV") |
|
parser.add_argument("--max_seq_length", default=128, type=int, |
|
help="The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded.") |
|
parser.add_argument("--max_words_to_mask", default=6, type=int, |
|
help="The maximum number of tokens to mask when computing scores") |
|
parser.add_argument("--max_sequence_per_time", default=80, type=int, |
|
help="The maximum number of sequences to feed into the model") |
|
parser.add_argument("--do_train", action='store_true', |
|
help="Whether to run training.") |
|
parser.add_argument("--do_eval", action='store_true', |
|
help="Whether to run eval on the dev set.") |
|
parser.add_argument("--do_ext_eval", action='store_true', |
|
help="Whether to run external eval on the downstream mcqa datasets.") |
|
parser.add_argument("--evaluate_during_training", action='store_true', |
|
help="Run evaluation during training at each logging step.") |
|
parser.add_argument("--do_lower_case", action='store_true', |
|
help="Set this flag if you are using an uncased model.") |
|
parser.add_argument("--per_gpu_train_batch_size", default=1, type=int, |
|
help="Batch size per GPU/CPU for training.") |
|
parser.add_argument("--per_gpu_eval_batch_size", default=1, type=int, |
|
help="Batch size per GPU/CPU for evaluation.") |
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.") |
|
parser.add_argument("--margin", default=1.0, type=float, |
|
help="The margin for ranking loss") |
|
parser.add_argument("--learning_rate", default=1e-5, type=float, |
|
help="The initial learning rate for Adam.") |
|
parser.add_argument("--weight_decay", default=0.01, type=float, |
|
help="Weight deay if we apply some.") |
|
parser.add_argument("--adam_epsilon", default=1e-6, type=float, |
|
help="Epsilon for Adam optimizer.") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, |
|
help="Max gradient norm.") |
|
parser.add_argument("--num_train_epochs", default=1.0, type=float, |
|
help="Total number of training epochs to perform.") |
|
parser.add_argument("--max_steps", default=-1, type=int, |
|
help="If > 0: set total number of training steps to perform. Override num_train_epochs.") |
|
parser.add_argument("--warmup_steps", default=0, type=int, |
|
help="Linear warmup over warmup_steps.") |
|
parser.add_argument("--warmup_proportion", default=0.05, type=float, |
|
help="Linear warmup over warmup proportion.") |
|
parser.add_argument('--logging_steps', type=int, default=50, |
|
help="Log every X updates steps.") |
|
parser.add_argument('--save_steps', type=int, default=50, |
|
help="Save checkpoint every X updates steps.") |
|
parser.add_argument("--logits_file", default='logits_test.txt', type=str, |
|
help="The file where prediction logits will be written") |
|
parser.add_argument("--results_file", default='eval_results.txt', type=str, |
|
help="The file where eval results will be written") |
|
parser.add_argument("--no_cuda", action='store_true', |
|
help="Avoid using CUDA when available") |
|
parser.add_argument('--overwrite_output_dir', action='store_true', |
|
help="Overwrite the content of the output directory") |
|
parser.add_argument('--seed', type=int, default=42, |
|
help="random seed for initialization") |
|
parser.add_argument('--fp16', action='store_true', |
|
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") |
|
parser.add_argument('--fp16_opt_level', type=str, default='O1', |
|
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." |
|
"See details at https://nvidia.github.io/apex/amp.html") |
|
parser.add_argument("--local_rank", type=int, default=-1, |
|
help="For distributed training: local_rank") |
|
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") |
|
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") |
|
|
|
|
|
|
|
parser.add_argument("--eval_output_dir", default="./output/eval_results", type=str, required=True, |
|
help="output of the predictions") |
|
|
|
args = parser.parse_args() |
|
|
|
wandb.init(project="car_mcqa", config=args) |
|
|
|
if os.path.exists(args.output_dir) and os.listdir( |
|
args.output_dir) and not args.overwrite_output_dir and args.do_train: |
|
raise ValueError( |
|
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( |
|
args.output_dir)) |
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
|
|
|
|
if args.local_rank == -1 or args.no_cuda: |
|
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") |
|
args.n_gpu = torch.cuda.device_count() |
|
else: |
|
torch.cuda.set_device(args.local_rank) |
|
device = torch.device("cuda", args.local_rank) |
|
torch.distributed.init_process_group(backend='nccl') |
|
args.n_gpu = 1 |
|
args.device = device |
|
|
|
if args.do_train: |
|
for handler in logging.root.handlers[:]: |
|
logging.root.removeHandler(handler) |
|
|
|
if args.do_train: |
|
log_file = os.path.join(args.output_dir, 'train.log') |
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt='%m/%d/%Y %H:%M:%S', |
|
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, |
|
filename=log_file) |
|
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", |
|
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) |
|
os.system("cp run_pretrain.py %s" % os.path.join(args.output_dir, 'run_pretrain.py')) |
|
os.system("cp data_utils.py %s" % os.path.join(args.output_dir, 'data_utils.py')) |
|
|
|
|
|
set_seed(args) |
|
args.task_name = args.task_name.lower() |
|
if args.task_name not in myprocessors: |
|
raise ValueError("Task not found: %s" % (args.task_name)) |
|
|
|
args.model_type = args.model_type.lower() |
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, |
|
finetuning_task=args.task_name, cache_dir=args.cache_dir) |
|
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, |
|
do_lower_case=args.do_lower_case, cache_dir=args.cache_dir) |
|
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), |
|
config=config, cache_dir=args.cache_dir) |
|
|
|
count = count_parameters(model) |
|
print("number of params", count) |
|
|
|
if args.local_rank == 0: |
|
torch.distributed.barrier() |
|
|
|
model.to(args.device) |
|
|
|
logger.info("Training/evaluation parameters %s", args) |
|
|
|
|
|
eval_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True) |
|
print("num of eval set", len(eval_dataset)) |
|
|
|
if args.do_train: |
|
init_result = evaluate(args, model, tokenizer, eval_dataset) |
|
print(init_result) |
|
|
|
if args.do_train: |
|
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) |
|
print("num train examples", len(train_dataset)) |
|
global_step, tr_loss = train(args, train_dataset, model, tokenizer, eval_dataset) |
|
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) |
|
|
|
|
|
|
|
results = {} |
|
if args.do_eval: |
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) |
|
model = model_class.from_pretrained(args.output_dir) |
|
model.eval() |
|
model.to(args.device) |
|
result = evaluate(args, model, tokenizer, eval_dataset) |
|
|
|
|
|
|
|
|
|
if args.do_ext_eval: |
|
del model |
|
import gc |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
|
|
ext_results = {} |
|
|
|
for task_name, dataset_path in eval_tasks: |
|
eval_args = argparse.Namespace() |
|
eval_args.dataset_file = dataset_path |
|
eval_args.lm = args.output_dir |
|
eval_args.out_dir = os.path.join(args.eval_output_dir, os.path.basename( args.output_dir)) |
|
eval_args.device = 0 |
|
eval_args.reader = task_name |
|
eval_args.overwrite_output_dir = args.overwrite_output_dir |
|
eval_args.cache_dir = None |
|
if task_name in ["socialiqa", "winogrande", "piqa", "commonsenseqa", "anli"]: |
|
acc = evaluate_main(eval_args) |
|
ext_results[task_name] = acc |
|
else: |
|
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) |
|
model = model_class.from_pretrained(args.output_dir) |
|
model.eval() |
|
model.to(args.device) |
|
|
|
|
|
examples = [] |
|
with open(dataset_path, "r") as f: |
|
for row in tqdm(f): |
|
sample = json.loads(row) |
|
examples.append(sample) |
|
features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length) |
|
eval_dataset = MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask) |
|
result = evaluate(args, model, tokenizer, eval_dataset) |
|
ext_results[task_name] = result['acc'] |
|
|
|
wandb.log({"ext/"+task_name:acc for task_name, acc in ext_results.items()}) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|