File size: 33,151 Bytes
2e3f432 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import json
import logging
import os
import random
import wandb
import numpy as np
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.utils.data import RandomSampler
from torch.utils.data import SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from tqdm import trange
from transformers import DebertaV2Config
from transformers import DebertaV2ForMaskedLM
from transformers import DebertaV2Tokenizer
from transformers import RobertaConfig
from transformers import RobertaForMaskedLM
from transformers import RobertaTokenizer
from transformers import get_linear_schedule_with_warmup
from data_utils import accuracy
from data_utils import convert_examples_to_features
from data_utils import myprocessors
from evaluate_DeBERTa import eval_tasks
from evaluate_DeBERTa import main as evaluate_main
logger = logging.getLogger(__name__)
from transformers import MODEL_WITH_LM_HEAD_MAPPING
MODEL_CONFIG_CLASSES = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
MODEL_CLASSES = {
'roberta-mlm': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'deberta-mlm': (DebertaV2Config, DebertaV2ForMaskedLM, DebertaV2Tokenizer)
}
class MyDataset(torch.utils.data.Dataset):
def __init__(self, data, pad_token, mask_token, max_words_to_mask):
self.data = data
self.pad_token = pad_token
self.mask_token = mask_token
self.max_words_to_mask = max_words_to_mask
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
return sample, self.pad_token, self.mask_token, self.max_words_to_mask
def mCollateFn(batch):
batch_input_ids = []
batch_input_mask = []
batch_input_labels = []
batch_label_ids = []
features = [b[0] for b in batch]
pad_token = batch[0][1]
mask_token = batch[0][2]
MAX_WORDS_TO_MASK = batch[0][3]
max_len = max([len(cand) for f in features for cand in f[0]])
for f in features:
batch_input_ids.append([])
batch_input_mask.append([])
batch_input_labels.append([])
batch_label_ids.append(f[2])
for i in range(len(f[0])):
masked_sequences = []
masked_labels = []
this_att_mask = []
sequence = f[0][i] + [pad_token] * (max_len - len(f[0][i]))
label_sequence = f[1][i] + [-100] * (max_len - len(f[1][i]))
valid_indices = [l_i for l_i, l in enumerate(label_sequence) if l != -100]
if len(valid_indices) > MAX_WORDS_TO_MASK:
rm_indices = random.sample(valid_indices, (len(valid_indices) - MAX_WORDS_TO_MASK))
label_sequence = [-100 if l_i in rm_indices else l for l_i, l in enumerate(label_sequence)]
for j, t in enumerate(label_sequence):
if t == -100:
continue
masked_sequences.append(sequence)
masked_labels.append([-100] * max_len)
else:
masked_sequences.append(sequence[:j] + [mask_token] + sequence[j + 1:])
masked_labels.append([-100] * j + [sequence[j]] + [-100] * (max_len - j - 1))
this_att_mask.append([1] * len(f[0][i]) + [0] * (max_len - len(f[0][i])))
batch_input_ids[-1].append(torch.tensor(masked_sequences, dtype=torch.long))
batch_input_mask[-1].append(torch.tensor(this_att_mask, dtype=torch.long))
batch_input_labels[-1].append(torch.tensor(masked_labels, dtype=torch.long))
return batch_input_ids, batch_input_mask, batch_input_labels, torch.tensor(batch_label_ids, dtype=torch.long)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def train(args, train_dataset, model, tokenizer, eval_dataset):
""" Train the model """
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter(os.path.join(args.output_dir, 'runs'))
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,
collate_fn=mCollateFn)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
warmup_steps = args.warmup_steps if args.warmup_steps != 0 else int(args.warmup_proportion * t_total)
logger.info("warm up steps = %d", warmup_steps)
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon, betas=(0.9, 0.98))
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * (
torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
curr_best = 0.0
CE = torch.nn.CrossEntropyLoss(reduction='none')
loss_fct = torch.nn.MultiMarginLoss(margin=args.margin)
for _ in train_iterator:
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, batch in tqdm(enumerate(epoch_iterator), desc=f"Train Epoch {_}"):
model.train()
num_cand = len(batch[0][0])
choice_loss = []
choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample])
choice_seq_lens = np.cumsum(choice_seq_lens)
input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device)
att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device)
input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device)
if len(input_ids) < args.max_sequence_per_time:
inputs = {'input_ids': input_ids,
'attention_mask': att_mask}
outputs = model(**inputs)
ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1))
ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1)
else:
ce_loss = []
for chunk in range(0, len(input_ids), args.max_sequence_per_time):
inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time],
'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]}
outputs = model(**inputs)
tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)),
input_labels[chunk:chunk + args.max_sequence_per_time].view(-1))
tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1)
ce_loss.append(tmp_ce_loss)
ce_loss = torch.cat(ce_loss, dim=0)
# all tokens are valid
for c_i in range(len(choice_seq_lens) - 1):
start = choice_seq_lens[c_i]
end = choice_seq_lens[c_i + 1]
choice_loss.append(-ce_loss[start:end].sum() / (end - start))
choice_loss = torch.stack(choice_loss)
choice_loss = choice_loss.view(-1, num_cand)
loss = loss_fct(choice_loss, batch[3].to(args.device))
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
tb_writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step)
tb_writer.add_scalar('loss', (tr_loss - logging_loss) / args.logging_steps, global_step)
tb_writer.add_scalar('Batch_loss', loss.item() * args.gradient_accumulation_steps, global_step)
logger.info(" global_step = %s, average loss = %s", global_step,
(tr_loss - logging_loss) / args.logging_steps)
wandb.log({"train/loss":loss.item()})
logging_loss = tr_loss
if args.local_rank == -1 and args.evaluate_during_training and global_step % args.save_steps == 0:
torch.cuda.empty_cache()
results = evaluate(args, model, tokenizer, eval_dataset)
wandb.log({"eval/"+k:v for k,v in results.items()})
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
if results['acc'] > curr_best:
curr_best = results['acc']
print("At iteration {}, best acc is {}".format(global_step, curr_best))
# Save model checkpoint
output_dir = args.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model,
'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.max_steps > 0 and global_step > args.max_steps:
epoch_iterator.close()
break
if args.max_steps > 0 and global_step > args.max_steps:
train_iterator.close()
break
results = evaluate(args, model, tokenizer, eval_dataset)
for key, value in results.items():
tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
if results['acc'] > curr_best:
curr_best = results['acc']
# Save model checkpoint
output_dir = args.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_to_save = model.module if hasattr(model,
'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
torch.save(args, os.path.join(output_dir, 'training_args.bin'))
logger.info("Saving model checkpoint to %s", output_dir)
if args.local_rank in [-1, 0]:
tb_writer.close()
return global_step, tr_loss / global_step
def save_logits(logits_all, filename):
with open(filename, "w") as f:
for i in range(len(logits_all)):
for j in range(len(logits_all[i])):
f.write(str(logits_all[i][j]))
if j == len(logits_all[i]) - 1:
f.write("\n")
else:
f.write(" ")
def evaluate(args, model, tokenizer, eval_dataset):
results = {}
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,
collate_fn=mCollateFn)
# Eval!
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
CE = torch.nn.CrossEntropyLoss(reduction='none')
preds = []
out_label_ids = []
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
with torch.no_grad():
num_cand = len(batch[0][0])
choice_loss = []
choice_seq_lens = np.array([0] + [len(c) for sample in batch[0] for c in sample])
choice_seq_lens = np.cumsum(choice_seq_lens)
input_ids = torch.cat([c for sample in batch[0] for c in sample], dim=0).to(args.device)
att_mask = torch.cat([c for sample in batch[1] for c in sample], dim=0).to(args.device)
input_labels = torch.cat([c for sample in batch[2] for c in sample], dim=0).to(args.device)
if len(input_ids) < args.max_sequence_per_time:
inputs = {'input_ids': input_ids,
'attention_mask': att_mask}
outputs = model(**inputs)
ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)), input_labels.view(-1))
ce_loss = ce_loss.view(outputs[0].size(0), -1).sum(1)
else:
ce_loss = []
for chunk in range(0, len(input_ids), args.max_sequence_per_time):
inputs = {'input_ids': input_ids[chunk:chunk + args.max_sequence_per_time],
'attention_mask': att_mask[chunk:chunk + args.max_sequence_per_time]}
outputs = model(**inputs)
tmp_ce_loss = CE(outputs[0].view(-1, outputs[0].size(-1)),
input_labels[chunk:chunk + args.max_sequence_per_time].view(-1))
tmp_ce_loss = tmp_ce_loss.view(outputs[0].size(0), -1).sum(1)
ce_loss.append(tmp_ce_loss)
ce_loss = torch.cat(ce_loss, dim=0)
for c_i in range(len(choice_seq_lens) - 1):
start = choice_seq_lens[c_i]
end = choice_seq_lens[c_i + 1]
choice_loss.append(-ce_loss[start:end].sum() / (end - start))
choice_loss = torch.stack(choice_loss)
choice_loss = choice_loss.view(-1, num_cand)
preds.append(choice_loss)
out_label_ids.append(batch[3].numpy())
preds = torch.cat(preds, dim=0).cpu().numpy()
save_logits(preds.tolist(), os.path.join(args.output_dir, args.logits_file))
preds = np.argmax(preds, axis=1)
result = accuracy(preds, np.concatenate(out_label_ids, axis=0))
results.update(result)
output_eval_file = os.path.join(args.output_dir, args.results_file)
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
print("%s = %s\n" % (key, str(result[key])))
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return results
def write_data(filename, data):
with open(filename, 'w') as fout:
for sample in data:
fout.write(json.dumps(sample))
fout.write('\n')
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
if args.local_rank not in [-1, 0] and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
processor = myprocessors[task](args)
cached_features_file = os.path.join(args.output_dir, 'cached_{}_{}_{}_{}'.format(
'dev' if evaluate else 'train',
str(args.model_type),
str(args.max_seq_length),
str(task)))
if os.path.exists(cached_features_file): # remove evaluate
features = torch.load(cached_features_file)
else:
examples = processor.get_dev_examples() if evaluate else processor.get_train_examples()
features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length)
# if evaluate:
torch.save(features, cached_features_file)
if args.local_rank == 0 and not evaluate:
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache
print('max_words_to_mask is %s for pretraining tasks %s' % (args.max_words_to_mask, task))
return MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--train_file", default=None, type=str, required=True,
help="The train file name")
parser.add_argument("--dev_file", default=None, type=str, required=True,
help="The dev file name")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(
MODEL_TYPES))
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--cache_dir", default=".cache", type=str,
help="Where do you want to store the pre-trained models downloaded")
parser.add_argument("--task_name", default=None, type=str, required=True,
help="The name of the task to train selected in the list: " + ", ".join(myprocessors.keys()))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--second_train_file", default=None, type=str,
help="Used when combining ATOMIC and CWWV")
parser.add_argument("--second_dev_file", default=None, type=str,
help="Used when combining ATOMIC and CWWV")
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--max_words_to_mask", default=6, type=int,
help="The maximum number of tokens to mask when computing scores")
parser.add_argument("--max_sequence_per_time", default=80, type=int,
help="The maximum number of sequences to feed into the model")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_ext_eval", action='store_true',
help="Whether to run external eval on the downstream mcqa datasets.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--per_gpu_train_batch_size", default=1, type=int,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=1, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--margin", default=1.0, type=float,
help="The margin for ranking loss")
parser.add_argument("--learning_rate", default=1e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=1.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument("--warmup_proportion", default=0.05, type=float,
help="Linear warmup over warmup proportion.")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--save_steps', type=int, default=50,
help="Save checkpoint every X updates steps.")
parser.add_argument("--logits_file", default='logits_test.txt', type=str,
help="The file where prediction logits will be written")
parser.add_argument("--results_file", default='eval_results.txt', type=str,
help="The file where eval results will be written")
parser.add_argument("--no_cuda", action='store_true',
help="Avoid using CUDA when available")
parser.add_argument('--overwrite_output_dir', action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--local_rank", type=int, default=-1,
help="For distributed training: local_rank")
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
### for extrinsic evaluation
parser.add_argument("--eval_output_dir", default="./output/eval_results", type=str, required=True,
help="output of the predictions")
args = parser.parse_args()
wandb.init(project="car_mcqa", config=args)
if os.path.exists(args.output_dir) and os.listdir(
args.output_dir) and not args.overwrite_output_dir and args.do_train:
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# Setup CUDA, GPU & distributed training
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
torch.distributed.init_process_group(backend='nccl')
args.n_gpu = 1
args.device = device
if args.do_train:
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
# Setup logging
if args.do_train:
log_file = os.path.join(args.output_dir, 'train.log')
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
filename=log_file)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
os.system("cp run_pretrain.py %s" % os.path.join(args.output_dir, 'run_pretrain.py'))
os.system("cp data_utils.py %s" % os.path.join(args.output_dir, 'data_utils.py'))
# Set seed
set_seed(args)
args.task_name = args.task_name.lower()
if args.task_name not in myprocessors:
raise ValueError("Task not found: %s" % (args.task_name))
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
finetuning_task=args.task_name, cache_dir=args.cache_dir)
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case, cache_dir=args.cache_dir)
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path),
config=config, cache_dir=args.cache_dir)
count = count_parameters(model)
print("number of params", count)
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
model.to(args.device)
logger.info("Training/evaluation parameters %s", args)
eval_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=True)
print("num of eval set", len(eval_dataset))
if args.do_train:
init_result = evaluate(args, model, tokenizer, eval_dataset)
print(init_result)
if args.do_train:
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
print("num train examples", len(train_dataset))
global_step, tr_loss = train(args, train_dataset, model, tokenizer, eval_dataset)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Evaluation
results = {}
if args.do_eval:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.output_dir)
model.eval()
model.to(args.device)
result = evaluate(args, model, tokenizer, eval_dataset)
# do extrinsic evaluation
if args.do_ext_eval:
del model
import gc
gc.collect()
torch.cuda.empty_cache()
ext_results = {}
for task_name, dataset_path in eval_tasks:
eval_args = argparse.Namespace()
eval_args.dataset_file = dataset_path
eval_args.lm = args.output_dir
eval_args.out_dir = os.path.join(args.eval_output_dir, os.path.basename( args.output_dir))
eval_args.device = 0
eval_args.reader = task_name
eval_args.overwrite_output_dir = args.overwrite_output_dir
eval_args.cache_dir = None
if task_name in ["socialiqa", "winogrande", "piqa", "commonsenseqa", "anli"]:
acc = evaluate_main(eval_args)
ext_results[task_name] = acc
else:
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
model = model_class.from_pretrained(args.output_dir)
model.eval()
model.to(args.device)
# load data
examples = []
with open(dataset_path, "r") as f:
for row in tqdm(f):
sample = json.loads(row)
examples.append(sample)
features = convert_examples_to_features(examples, tokenizer, max_length=args.max_seq_length)
eval_dataset = MyDataset(features, tokenizer.pad_token_id, tokenizer.mask_token_id, args.max_words_to_mask)
result = evaluate(args, model, tokenizer, eval_dataset)
ext_results[task_name] = result['acc']
wandb.log({"ext/"+task_name:acc for task_name, acc in ext_results.items()})
# return results
if __name__ == "__main__":
main()
|