|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- toshi456/llava-jp-instruct-108k |
|
- turing-motors/LLaVA-Pretrain-JA |
|
language: |
|
- ja |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
# LLaVA-JP Model Card |
|
|
|
## Model detail |
|
|
|
**Model type:** |
|
|
|
LLaVA-JP is a vision-language model that can converse about input images.<br> |
|
This model is an LVLM model trained using [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) as the image encoder and [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) as the text decoder. supports the input of 768 x 768 high resolution images by scaling_on_scales method. |
|
|
|
**Training:** |
|
|
|
This model was initially trained with the Vision Projector using LLaVA-Pretrain-JA.<br> |
|
In the second phase, it was fine-tuned with LLaVA-JP-Instruct-108K. |
|
|
|
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main |
|
|
|
**Comparing VLMs** |
|
|Model|JA-VG-VQA-500<br>(ROUGE-L)|JA-VLM-Bench-In-the-Wild<br>(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average) |
|
|-|-|-|-|-|-|-| |
|
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07| |
|
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07| |
|
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44| |
|
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83| |
|
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**| |
|
|[llava-jp-1.3b-v1.1-llava-jp-instruct-108k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1-llava-jp-instruct-108k)|-|17.07|**50.60**|45.31|33.24|41.52| |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630af71ffaaea618ebc973db/SIXXIqwp-voffOXKZouqb.png) |
|
|
|
## How to use the model |
|
**1. Download dependencies** |
|
``` |
|
git clone https://github.com/tosiyuki/LLaVA-JP.git |
|
``` |
|
|
|
**2. Inference** |
|
```python |
|
import torch |
|
import transformers |
|
from PIL import Image |
|
|
|
from transformers.generation.streamers import TextStreamer |
|
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM |
|
from llava.train.dataset import tokenizer_image_token |
|
|
|
|
|
if __name__ == "__main__": |
|
model_path = 'toshi456/llava-jp-1.3b-v1.1-llava-jp-instruct-108k' |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32 |
|
|
|
model = LlavaGpt2ForCausalLM.from_pretrained( |
|
model_path, |
|
low_cpu_mem_usage=True, |
|
use_safetensors=True, |
|
torch_dtype=torch_dtype, |
|
device_map=device, |
|
) |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_path, |
|
model_max_length=1532, |
|
padding_side="right", |
|
use_fast=False, |
|
) |
|
model.eval() |
|
|
|
conv_mode = "v1" |
|
conv = conv_templates[conv_mode].copy() |
|
|
|
# image pre-process |
|
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg" |
|
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') |
|
|
|
image_size = model.get_model().vision_tower.image_processor.size["height"] |
|
if model.get_model().vision_tower.scales is not None: |
|
image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales) |
|
|
|
if device == "cuda": |
|
image_tensor = model.get_model().vision_tower.image_processor( |
|
image, |
|
return_tensors='pt', |
|
size={"height": image_size, "width": image_size} |
|
)['pixel_values'].half().cuda().to(torch_dtype) |
|
else: |
|
image_tensor = model.get_model().vision_tower.image_processor( |
|
image, |
|
return_tensors='pt', |
|
size={"height": image_size, "width": image_size} |
|
)['pixel_values'].to(torch_dtype) |
|
|
|
# create prompt |
|
# ユーザー: <image>\n{prompt} |
|
prompt = "画像について説明してください。" |
|
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt |
|
conv.append_message(conv.roles[0], inp) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token( |
|
prompt, |
|
tokenizer, |
|
IMAGE_TOKEN_INDEX, |
|
return_tensors='pt' |
|
).unsqueeze(0) |
|
if device == "cuda": |
|
input_ids = input_ids.to(device) |
|
|
|
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する |
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0) |
|
|
|
# predict |
|
with torch.inference_mode(): |
|
output_id = model.generate( |
|
inputs=input_ids, |
|
images=image_tensor, |
|
do_sample=False, |
|
temperature=1.0, |
|
top_p=1.0, |
|
no_repeat_ngram_size=2, |
|
max_new_tokens=256, |
|
streamer=streamer, |
|
use_cache=True, |
|
) |
|
|
|
"""グレーの壁に置かれた木製のテーブルの上に、茶色のタビーの猫が横たわっている。猫は右を向いており、頭は左を向き、尻尾は体の前に突き出ているように見える。テーブルは木製で、猫の後ろには黒い金属製の脚があり、テーブルの下には小さな緑の植物が置かれる。<EOD|LLM-jp>""" |
|
``` |
|
|
|
## Training dataset |
|
**Stage1 Pretrain** |
|
- [LLaVA-Pretrain-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Pretrain-JA) |
|
|
|
**Stage2 Fine-tuning** |
|
- [LLaVA-JP-Instruct-108K](https://huggingface.co/datasets/toshi456/LLaVA-JP-Instruct-108K) |
|
|
|
## Acknowledgement |
|
- [LLaVA](https://llava-vl.github.io/) |
|
- [LLM-jp](https://llm-jp.nii.ac.jp/) |
|
- [scaling_on_scales](https://github.com/bfshi/scaling_on_scales/tree/master) |
|
|
|
## License |
|
Apache License 2.0 |