SetFit models
Collection
2 items
•
Updated
This is a SetFit model trained on the sst2 dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. For classification, it uses a LogisticRegression instance.
The model has been trained using an efficient few-shot learning technique that involves:
Label | Examples |
---|---|
negative |
|
positive |
|
Label | Accuracy |
---|---|
all | 0.8588 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from 🤗 Hub
model = SetFitModel.from_pretrained("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2-8-shot")
# Run inference
preds = model("a fast , funny , highly enjoyable movie . ")
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 11.4375 | 33 |
Label | Training Sample Count |
---|---|
negative | 8 |
positive | 8 |
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.1111 | 1 | 0.2126 | - |
1.1111 | 10 | 0.1604 | - |
2.2222 | 20 | 0.0224 | 0.1761 |
3.3333 | 30 | 0.0039 | - |
4.4444 | 40 | 0.0029 | 0.1935 |
5.5556 | 50 | 0.0026 | - |
6.6667 | 60 | 0.0008 | 0.1944 |
7.7778 | 70 | 0.0009 | - |
8.8889 | 80 | 0.0027 | 0.1941 |
10.0 | 90 | 0.0004 | - |
Carbon emissions were measured using CodeCarbon.
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}