SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 256 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(reduced_dim): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-reduced")
sentences = [
'A boy is vacuuming.',
'A little boy is vacuuming the floor.',
'A woman is applying eye shadow.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.833 |
spearman_cosine |
0.845 |
pearson_manhattan |
0.8284 |
spearman_manhattan |
0.8314 |
pearson_euclidean |
0.8291 |
spearman_euclidean |
0.8319 |
pearson_dot |
0.7274 |
spearman_dot |
0.7358 |
pearson_max |
0.833 |
spearman_max |
0.845 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8266 |
spearman_cosine |
0.8416 |
pearson_manhattan |
0.825 |
spearman_manhattan |
0.8277 |
pearson_euclidean |
0.8256 |
spearman_euclidean |
0.8285 |
pearson_dot |
0.712 |
spearman_dot |
0.7163 |
pearson_max |
0.8266 |
spearman_max |
0.8416 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8171 |
spearman_cosine |
0.8356 |
pearson_manhattan |
0.8176 |
spearman_manhattan |
0.8213 |
pearson_euclidean |
0.8175 |
spearman_euclidean |
0.8216 |
pearson_dot |
0.6852 |
spearman_dot |
0.6861 |
pearson_max |
0.8176 |
spearman_max |
0.8356 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7964 |
spearman_cosine |
0.8244 |
pearson_manhattan |
0.7983 |
spearman_manhattan |
0.8049 |
pearson_euclidean |
0.8003 |
spearman_euclidean |
0.807 |
pearson_dot |
0.6312 |
spearman_dot |
0.6277 |
pearson_max |
0.8003 |
spearman_max |
0.8244 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7401 |
spearman_cosine |
0.7872 |
pearson_manhattan |
0.761 |
spearman_manhattan |
0.7761 |
pearson_euclidean |
0.7645 |
spearman_euclidean |
0.7794 |
pearson_dot |
0.5202 |
spearman_dot |
0.5115 |
pearson_max |
0.7645 |
spearman_max |
0.7872 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8124 |
spearman_cosine |
0.8211 |
pearson_manhattan |
0.7835 |
spearman_manhattan |
0.7822 |
pearson_euclidean |
0.7852 |
spearman_euclidean |
0.784 |
pearson_dot |
0.5917 |
spearman_dot |
0.5785 |
pearson_max |
0.8124 |
spearman_max |
0.8211 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.8079 |
spearman_cosine |
0.819 |
pearson_manhattan |
0.7795 |
spearman_manhattan |
0.7786 |
pearson_euclidean |
0.7813 |
spearman_euclidean |
0.7813 |
pearson_dot |
0.5714 |
spearman_dot |
0.5602 |
pearson_max |
0.8079 |
spearman_max |
0.819 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7988 |
spearman_cosine |
0.8129 |
pearson_manhattan |
0.7728 |
spearman_manhattan |
0.7728 |
pearson_euclidean |
0.7735 |
spearman_euclidean |
0.7751 |
pearson_dot |
0.5397 |
spearman_dot |
0.5279 |
pearson_max |
0.7988 |
spearman_max |
0.8129 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.772 |
spearman_cosine |
0.7936 |
pearson_manhattan |
0.7561 |
spearman_manhattan |
0.7597 |
pearson_euclidean |
0.7581 |
spearman_euclidean |
0.7628 |
pearson_dot |
0.489 |
spearman_dot |
0.4779 |
pearson_max |
0.772 |
spearman_max |
0.7936 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.7138 |
spearman_cosine |
0.7486 |
pearson_manhattan |
0.7254 |
spearman_manhattan |
0.7339 |
pearson_euclidean |
0.7274 |
spearman_euclidean |
0.7382 |
pearson_dot |
0.3856 |
spearman_dot |
0.3749 |
pearson_max |
0.7274 |
spearman_max |
0.7486 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at 65dd388
- Size: 557,850 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
|
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
|
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
|
- Samples:
anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
The boy skates down the sidewalk. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
, sentence2
, and score
- Approximate statistics based on the first 1000 samples:
|
sentence1 |
sentence2 |
score |
type |
string |
string |
float |
details |
- min: 5 tokens
- mean: 15.0 tokens
- max: 44 tokens
|
- min: 6 tokens
- mean: 14.99 tokens
- max: 61 tokens
|
- min: 0.0
- mean: 0.47
- max: 1.0
|
- Samples:
sentence1 |
sentence2 |
score |
A man with a hard hat is dancing. |
A man wearing a hard hat is dancing. |
1.0 |
A young child is riding a horse. |
A child is riding a horse. |
0.95 |
A man is feeding a mouse to a snake. |
The man is feeding a mouse to the snake. |
1.0 |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64,
32,
16
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: False
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: None
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
loss |
sts-dev-128_spearman_cosine |
sts-dev-16_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-32_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-test-128_spearman_cosine |
sts-test-16_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-32_spearman_cosine |
sts-test-64_spearman_cosine |
0.0229 |
100 |
21.0363 |
14.2448 |
0.7856 |
0.7417 |
0.7873 |
0.7751 |
0.7846 |
- |
- |
- |
- |
- |
0.0459 |
200 |
11.1093 |
13.4736 |
0.7877 |
0.7298 |
0.7861 |
0.7687 |
0.7798 |
- |
- |
- |
- |
- |
0.0688 |
300 |
10.1847 |
13.7191 |
0.7877 |
0.7284 |
0.7898 |
0.7617 |
0.7755 |
- |
- |
- |
- |
- |
0.0918 |
400 |
9.356 |
13.2955 |
0.7906 |
0.7385 |
0.7914 |
0.7715 |
0.7799 |
- |
- |
- |
- |
- |
0.1147 |
500 |
8.9318 |
12.8099 |
0.7889 |
0.7346 |
0.7910 |
0.7690 |
0.7801 |
- |
- |
- |
- |
- |
0.1376 |
600 |
8.5293 |
13.7384 |
0.7814 |
0.7362 |
0.7866 |
0.7656 |
0.7736 |
- |
- |
- |
- |
- |
0.1606 |
700 |
8.7589 |
13.4466 |
0.7899 |
0.7467 |
0.7945 |
0.7770 |
0.7847 |
- |
- |
- |
- |
- |
0.1835 |
800 |
7.7941 |
13.6734 |
0.7960 |
0.7526 |
0.7986 |
0.7800 |
0.7894 |
- |
- |
- |
- |
- |
0.2065 |
900 |
7.9183 |
12.9082 |
0.7885 |
0.7470 |
0.7966 |
0.7705 |
0.7803 |
- |
- |
- |
- |
- |
0.2294 |
1000 |
7.3669 |
13.2827 |
0.7751 |
0.7181 |
0.7822 |
0.7557 |
0.7675 |
- |
- |
- |
- |
- |
0.2524 |
1100 |
7.6205 |
13.0227 |
0.7875 |
0.7373 |
0.7914 |
0.7730 |
0.7828 |
- |
- |
- |
- |
- |
0.2753 |
1200 |
7.4308 |
13.4980 |
0.7844 |
0.7373 |
0.7890 |
0.7709 |
0.7755 |
- |
- |
- |
- |
- |
0.2982 |
1300 |
7.3625 |
12.8380 |
0.7984 |
0.7520 |
0.8032 |
0.7824 |
0.7915 |
- |
- |
- |
- |
- |
0.3212 |
1400 |
6.9421 |
12.7016 |
0.7912 |
0.7358 |
0.7960 |
0.7749 |
0.7850 |
- |
- |
- |
- |
- |
0.3441 |
1500 |
7.0635 |
13.2198 |
0.8018 |
0.7578 |
0.8070 |
0.7861 |
0.7961 |
- |
- |
- |
- |
- |
0.3671 |
1600 |
6.6682 |
13.3225 |
0.7906 |
0.7522 |
0.7944 |
0.7763 |
0.7849 |
- |
- |
- |
- |
- |
0.3900 |
1700 |
6.42 |
12.7381 |
0.7984 |
0.7449 |
0.8021 |
0.7806 |
0.7911 |
- |
- |
- |
- |
- |
0.4129 |
1800 |
6.659 |
13.0247 |
0.7947 |
0.7461 |
0.8002 |
0.7808 |
0.7876 |
- |
- |
- |
- |
- |
0.4359 |
1900 |
6.1664 |
12.6814 |
0.7893 |
0.7312 |
0.7959 |
0.7700 |
0.7807 |
- |
- |
- |
- |
- |
0.4588 |
2000 |
6.392 |
13.0238 |
0.7935 |
0.7354 |
0.7987 |
0.7758 |
0.7860 |
- |
- |
- |
- |
- |
0.4818 |
2100 |
6.177 |
12.8833 |
0.7891 |
0.7428 |
0.7924 |
0.7723 |
0.7801 |
- |
- |
- |
- |
- |
0.5047 |
2200 |
6.0411 |
12.5269 |
0.7836 |
0.7400 |
0.7875 |
0.7664 |
0.7765 |
- |
- |
- |
- |
- |
0.5276 |
2300 |
6.1506 |
13.4349 |
0.7741 |
0.7350 |
0.7803 |
0.7556 |
0.7634 |
- |
- |
- |
- |
- |
0.5506 |
2400 |
6.109 |
12.6996 |
0.7808 |
0.7326 |
0.7860 |
0.7663 |
0.7735 |
- |
- |
- |
- |
- |
0.5735 |
2500 |
6.2849 |
13.2831 |
0.7874 |
0.7365 |
0.7932 |
0.7727 |
0.7794 |
- |
- |
- |
- |
- |
0.5965 |
2600 |
6.0658 |
12.9425 |
0.7988 |
0.7481 |
0.8042 |
0.7818 |
0.7889 |
- |
- |
- |
- |
- |
0.6194 |
2700 |
6.0646 |
13.0144 |
0.7965 |
0.7509 |
0.8010 |
0.7800 |
0.7875 |
- |
- |
- |
- |
- |
0.6423 |
2800 |
6.0795 |
12.7602 |
0.7912 |
0.7472 |
0.7937 |
0.7778 |
0.7818 |
- |
- |
- |
- |
- |
0.6653 |
2900 |
6.2407 |
13.2381 |
0.7829 |
0.7381 |
0.7873 |
0.7664 |
0.7765 |
- |
- |
- |
- |
- |
0.6882 |
3000 |
6.1872 |
12.9064 |
0.7942 |
0.7516 |
0.7965 |
0.7793 |
0.7857 |
- |
- |
- |
- |
- |
0.7112 |
3100 |
5.8987 |
12.9323 |
0.8065 |
0.7585 |
0.8087 |
0.7909 |
0.7989 |
- |
- |
- |
- |
- |
0.7341 |
3200 |
5.996 |
13.1017 |
0.7971 |
0.7566 |
0.8005 |
0.7811 |
0.7889 |
- |
- |
- |
- |
- |
0.7571 |
3300 |
5.3748 |
12.7601 |
0.8398 |
0.7881 |
0.8441 |
0.8232 |
0.8337 |
- |
- |
- |
- |
- |
0.7800 |
3400 |
4.0798 |
12.7221 |
0.8400 |
0.7908 |
0.8440 |
0.8255 |
0.8342 |
- |
- |
- |
- |
- |
0.8029 |
3500 |
3.6024 |
12.5445 |
0.8408 |
0.7892 |
0.8447 |
0.8247 |
0.8347 |
- |
- |
- |
- |
- |
0.8259 |
3600 |
3.4619 |
12.6025 |
0.8405 |
0.7883 |
0.8442 |
0.8255 |
0.8347 |
- |
- |
- |
- |
- |
0.8488 |
3700 |
3.2288 |
12.6636 |
0.8388 |
0.7872 |
0.8433 |
0.8226 |
0.8330 |
- |
- |
- |
- |
- |
0.8718 |
3800 |
3.0543 |
12.6475 |
0.8386 |
0.7834 |
0.8427 |
0.8229 |
0.8330 |
- |
- |
- |
- |
- |
0.8947 |
3900 |
3.0368 |
12.5390 |
0.8407 |
0.7845 |
0.8444 |
0.8227 |
0.8346 |
- |
- |
- |
- |
- |
0.9176 |
4000 |
2.9591 |
12.5709 |
0.8419 |
0.7864 |
0.8456 |
0.8245 |
0.8359 |
- |
- |
- |
- |
- |
0.9406 |
4100 |
2.944 |
12.6029 |
0.8415 |
0.7868 |
0.8452 |
0.8245 |
0.8359 |
- |
- |
- |
- |
- |
0.9635 |
4200 |
2.9032 |
12.5514 |
0.8423 |
0.7888 |
0.8455 |
0.8254 |
0.8363 |
- |
- |
- |
- |
- |
0.9865 |
4300 |
2.838 |
12.6054 |
0.8416 |
0.7872 |
0.8450 |
0.8244 |
0.8356 |
- |
- |
- |
- |
- |
1.0 |
4359 |
- |
- |
- |
- |
- |
- |
- |
0.8190 |
0.7486 |
0.8211 |
0.7936 |
0.8129 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.244 kWh
- Carbon Emitted: 0.095 kg of CO2
- Hours Used: 0.923 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}