Taishi-N324's picture
Upload README.md
fe44a3c verified
|
raw
history blame
11.8 kB
metadata
language:
  - en
  - ja
library_name: transformers
pipeline_tag: text-generation
model_type: mistral
license: apache-2.0

Swallow-MS-7b-v0.1

Our Swallow-MS-7b-v0.1 model has undergone continuous pre-training from the Mistral-7B-v0.1, primarily with the addition of Japanese language data. The instruction tuning version will be released soon.

Model Release Updates

We are excited to share the release schedule for our latest models:

This repository provides large language models developed by TokyoTech-LLM.

Model Details

  • Model type: Please refer to Mistral technical report for details on the model architecture.
  • Language(s): Japanese English
  • Tokenizer: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
  • Contact: swallow[at]nlp.c.titech.ac.jp

Instruct Model Performance

MT-Bench JA

TODO

Base Model Performance

Japanese tasks

Model Size JCommonsenseQA JEMHopQA NIILC JSQuAD XL-Sum MGSM WMT20-en-ja WMT20-ja-en Average
4-shot 4-shot 4-shot 4-shot 1-shot 4-shot 4-shot 4-shot
CyberAgentLM2-7B 7B 0.2198 0.5047 0.5066 0.7799 0.0233 0.0600 0.2345 0.1499 0.3098
Llama 2 7B 0.3852 0.4240 0.3410 0.7917 0.1905 0.0760 0.1783 0.1738 0.3201
japanese-stablelm-base-beta-7b 7B 0.3610 0.4478 0.4432 0.8318 0.2195 0.0720 0.1946 0.1226 0.3366
japanese-stablelm-base-ja_vocab-beta-7b 7B 0.2172 0.4482 0.4309 0.8202 0.0757 0.0520 0.1601 0.1453 0.2937
ELYZA-japanese-Llama-2-7b 7B 0.5791 0.4703 0.4019 0.8226 0.1312 0.0600 0.1795 0.1289 0.3467
ELYZA-japanese-Llama-2-7b-fast 7B 0.5308 0.4330 0.3898 0.8131 0.1289 0.0720 0.1678 0.1143 0.3312
youri-7b (base) 7B 0.4620 0.4776 0.4999 0.8506 0.1957 0.0640 0.2671 0.1971 0.3768
Swallow-7b 7B 0.4808 0.5078 0.5968 0.8573 0.1830 0.1240 0.2510 0.1511 0.3940
Swallow-7b-plus 7B 0.5478 0.5493 0.6030 0.8544 0.1806 0.1360 0.2568 0.1441 0.4090
Qwen-7B 7B 0.7712 0.4234 0.2376 0.8594 0.1371 0.2160 0.1689 0.1801 0.3742
nekomata-7b 7B 0.7417 0.4928 0.5022 0.8707 0.1676 0.1240 0.2673 0.1815 0.4185
Mistral-7B-v0.1 7B 0.7301 0.4245 0.2722 0.8563 0.2006 0.1760 0.1405 0.1733 0.3717
japanese-stablelm-base-gamma-7b 7B 0.7364 0.4643 0.5568 0.8910 0.2293 0.1680 0.2390 0.1561 0.4301
Swallow-MS-7b-v0.1 7B 0.8570 0.4915 0.5519 0.8802 0.1988 0.2240 0.2494 0.1667 0.4524

English tasks

Model Size OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO GSM8K Average
8-shot 8-shot 8-shot 8-shot 8-shot 8-shot
CyberAgentLM2-7B 7B 0.2860 0.3496 0.5003 0.3510 0.8581 0.0705 0.4026
Llama 2 7B 0.3580 0.6265 0.5860 0.3207 0.9049 0.1410 0.4895
japanese-stablelm-base-beta-7b 7B 0.3620 0.5903 0.5707 0.2992 0.8994 0.1198 0.4736
japanese-stablelm-base-ja_vocab-beta-7b 7B 0.3520 0.5549 0.5644 0.3079 0.8942 0.0538 0.4545
ELYZA-japanese-Llama-2-7b 7B 0.3400 0.5875 0.5595 0.2721 0.8989 0.1638 0.4703
ELYZA-japanese-Llama-2-7b-fast 7B 0.3280 0.5817 0.5530 0.2605 0.8989 0.1425 0.4608
youri-7b (base) 7B 0.3400 0.5257 0.5540 0.3297 0.8938 0.0963 0.4566
Swallow-7b 7B 0.3180 0.4836 0.5308 0.3125 0.8817 0.1130 0.4399
Swallow-7b-plus 7B 0.3280 0.4558 0.5259 0.3134 0.8929 0.1061 0.4370
Qwen-7B 7B 0.3640 0.5695 0.5787 0.3799 0.8933 0.4617 0.5412
nekomata-7b 7B 0.3340 0.4371 0.5340 0.2933 0.8766 0.1531 0.4380
Mistral-7B-v0.1 7B 0.3660 0.7050 0.6264 0.3799 0.9157 0.3533 0.5577
japanese-stablelm-base-gamma-7b 7B 0.3240 0.5745 0.5739 0.3546 0.8976 0.1911 0.4860
Swallow-MS-7b-v0.1 7B 0.3440 0.5976 0.5810 0.3364 0.9037 0.2623 0.5042

Code generation tasks

Model Size JHumanEval HumanEval
pass@1 pass@1
CyberAgentLM2-7B 7B 0.0634 0.0756
Llama 2 7B 0.1152 0.1378
japanese-stablelm-base-beta-7b 7B 0.1018 0.1280
japanese-stablelm-base-ja_vocab-beta-7b 7B 0.0896 0.1122
ELYZA-japanese-Llama-2-7b 7B 0.0287 0.0427
ELYZA-japanese-Llama-2-7b-fast 7B 0.0000 0.0037
youri-7b (base) 7B 0.0829 0.0982
Swallow-7b 7B 0.0183 0.0183
Swallow-7b-plus 7B 0.0061 0.0037
Qwen-7B 7B 0.1701 0.1805
nekomata-7b 7B 0.0988 0.1402
Mistral-7B-v0.1 7B 0.2555 0.2933
japanese-stablelm-base-gamma-7b 7B 0.1823 0.1915
Swallow-MS-7b-v0.1 7B 0.2305 0.2768

Evaluation Benchmarks

Japanese evaluation benchmarks

We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows:

  • Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022])
  • Open-ended question answering (JEMHopQA [Ishii+, 2023])
  • Open-ended question answering (NIILC [Sekine, 2003])
  • Machine reading comprehension (JSQuAD [Kurihara+, 2022])
  • Automatic summarization (XL-Sum [Hasan+, 2021])
  • Machine translation (WMT2020 ja-en [Barrault+, 2020])
  • Machine translation (WMT2020 en-ja [Barrault+, 2020])
  • Mathematical reasoning (MGSM [Shi+, 2023])

English evaluation benchmarks

We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows:

  • Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018])
  • Open-ended question answering (TriviaQA [Joshi+, 2017])
  • Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018])
  • Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021])
  • Natural language inference (HellaSwag [Zellers+, 2019])
  • Mathematical reasoning (GSM8k [Cobbe+, 2021])

Code evaluation benchmarks

We utilized the Code Generation LM Evaluation Harness [Allal+, 2022] (commit #0261c52). The details are as follows:

  • Code generation (HumanEval [Chen+, 2021])
  • Code generation in Japanese (JHumanEval [Satoh+, 2024])

Usage

First install additional dependencies in requirements.txt:

pip install -r requirements.txt

Instruction format Ver1.0

This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.

The template used to construct a prompt for the Instruct model is specified as follows:

<s>[INST] <<SYS>>\n{Instruction}\n<</SYS>>\n\n{USER_MESSAGE_1} [INST] {BOT_MESSAGE_1} </s>[INST] {USER_MESSAGE_2}[/INST] 

Please be aware that <s> and </s> are special tokens used for the beginning of string (BOS) and end of string (EOS), respectively, while [INST] and [/INST] are considered regular strings.

Use the instruct model Ver1.0

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "tokyotech-llm/Swallow-MS-7b-instruct-v1.0"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

device = "cuda"

messages = [
    {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"},
    {"role": "user", "content": "東京工業大学の主なキャンパスについて教えてください"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=128, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Use the base model

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model_name = "tokyotech-llm/Swallow-MS-7b-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
prompt = "東京工業大学の主なキャンパスは、"
input_ids = tokenizer.encode(
    prompt,
    add_special_tokens=False,
    return_tensors="pt"
)
tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=128,
    temperature=0.99,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)

Training Datasets

Continual Pre-Training

The following datasets were used for continual pre-training.

Instruction Tuning

Ver1.0

The following datasets were used for the instruction tuning.

Please note that some of the data had issues with quality or format, so not all of it was used.

Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

Acknowledgements

We thank Mistral AI for releasing Mistral 7B v0.1 under an open license for others to build on.

Our project is supported by the ABCI Large-scale Language Model Building Support Program of the National Institute of Advanced Industrial Science and Technology.

License

apache-2.0

Authors

Here are the team members: