language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
model_type: mistral
license: apache-2.0
Swallow-MS-7b-v0.1
Our Swallow-MS-7b-v0.1 model has undergone continuous pre-training from the Mistral-7B-v0.1, primarily with the addition of Japanese language data. The instruction tuning version will be released soon.
Model Release Updates
We are excited to share the release schedule for our latest models:
- April 25, 2024: Released the Swallow-MS-7b-instruct-v1.0.
- March 11, 2024: Released the Swallow-MS-7b-v0.1
This repository provides large language models developed by TokyoTech-LLM.
Model Details
- Model type: Please refer to Mistral technical report for details on the model architecture.
- Language(s): Japanese English
- Tokenizer: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
- Contact: swallow[at]nlp.c.titech.ac.jp
Instruct Model Performance
MT-Bench JA
TODO
Base Model Performance
Japanese tasks
Model | Size | JCommonsenseQA | JEMHopQA | NIILC | JSQuAD | XL-Sum | MGSM | WMT20-en-ja | WMT20-ja-en | Average |
---|---|---|---|---|---|---|---|---|---|---|
4-shot | 4-shot | 4-shot | 4-shot | 1-shot | 4-shot | 4-shot | 4-shot | |||
CyberAgentLM2-7B | 7B | 0.2198 | 0.5047 | 0.5066 | 0.7799 | 0.0233 | 0.0600 | 0.2345 | 0.1499 | 0.3098 |
Llama 2 | 7B | 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 | 0.3201 |
japanese-stablelm-base-beta-7b | 7B | 0.3610 | 0.4478 | 0.4432 | 0.8318 | 0.2195 | 0.0720 | 0.1946 | 0.1226 | 0.3366 |
japanese-stablelm-base-ja_vocab-beta-7b | 7B | 0.2172 | 0.4482 | 0.4309 | 0.8202 | 0.0757 | 0.0520 | 0.1601 | 0.1453 | 0.2937 |
ELYZA-japanese-Llama-2-7b | 7B | 0.5791 | 0.4703 | 0.4019 | 0.8226 | 0.1312 | 0.0600 | 0.1795 | 0.1289 | 0.3467 |
ELYZA-japanese-Llama-2-7b-fast | 7B | 0.5308 | 0.4330 | 0.3898 | 0.8131 | 0.1289 | 0.0720 | 0.1678 | 0.1143 | 0.3312 |
youri-7b (base) | 7B | 0.4620 | 0.4776 | 0.4999 | 0.8506 | 0.1957 | 0.0640 | 0.2671 | 0.1971 | 0.3768 |
Swallow-7b | 7B | 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 | 0.3940 |
Swallow-7b-plus | 7B | 0.5478 | 0.5493 | 0.6030 | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 | 0.4090 |
Qwen-7B | 7B | 0.7712 | 0.4234 | 0.2376 | 0.8594 | 0.1371 | 0.2160 | 0.1689 | 0.1801 | 0.3742 |
nekomata-7b | 7B | 0.7417 | 0.4928 | 0.5022 | 0.8707 | 0.1676 | 0.1240 | 0.2673 | 0.1815 | 0.4185 |
Mistral-7B-v0.1 | 7B | 0.7301 | 0.4245 | 0.2722 | 0.8563 | 0.2006 | 0.1760 | 0.1405 | 0.1733 | 0.3717 |
japanese-stablelm-base-gamma-7b | 7B | 0.7364 | 0.4643 | 0.5568 | 0.8910 | 0.2293 | 0.1680 | 0.2390 | 0.1561 | 0.4301 |
Swallow-MS-7b-v0.1 | 7B | 0.8570 | 0.4915 | 0.5519 | 0.8802 | 0.1988 | 0.2240 | 0.2494 | 0.1667 | 0.4524 |
English tasks
Model | Size | OpenBookQA | TriviaQA | HellaSwag | SQuAD2.0 | XWINO | GSM8K | Average |
---|---|---|---|---|---|---|---|---|
8-shot | 8-shot | 8-shot | 8-shot | 8-shot | 8-shot | |||
CyberAgentLM2-7B | 7B | 0.2860 | 0.3496 | 0.5003 | 0.3510 | 0.8581 | 0.0705 | 0.4026 |
Llama 2 | 7B | 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 | 0.4895 |
japanese-stablelm-base-beta-7b | 7B | 0.3620 | 0.5903 | 0.5707 | 0.2992 | 0.8994 | 0.1198 | 0.4736 |
japanese-stablelm-base-ja_vocab-beta-7b | 7B | 0.3520 | 0.5549 | 0.5644 | 0.3079 | 0.8942 | 0.0538 | 0.4545 |
ELYZA-japanese-Llama-2-7b | 7B | 0.3400 | 0.5875 | 0.5595 | 0.2721 | 0.8989 | 0.1638 | 0.4703 |
ELYZA-japanese-Llama-2-7b-fast | 7B | 0.3280 | 0.5817 | 0.5530 | 0.2605 | 0.8989 | 0.1425 | 0.4608 |
youri-7b (base) | 7B | 0.3400 | 0.5257 | 0.5540 | 0.3297 | 0.8938 | 0.0963 | 0.4566 |
Swallow-7b | 7B | 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 | 0.4399 |
Swallow-7b-plus | 7B | 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 | 0.4370 |
Qwen-7B | 7B | 0.3640 | 0.5695 | 0.5787 | 0.3799 | 0.8933 | 0.4617 | 0.5412 |
nekomata-7b | 7B | 0.3340 | 0.4371 | 0.5340 | 0.2933 | 0.8766 | 0.1531 | 0.4380 |
Mistral-7B-v0.1 | 7B | 0.3660 | 0.7050 | 0.6264 | 0.3799 | 0.9157 | 0.3533 | 0.5577 |
japanese-stablelm-base-gamma-7b | 7B | 0.3240 | 0.5745 | 0.5739 | 0.3546 | 0.8976 | 0.1911 | 0.4860 |
Swallow-MS-7b-v0.1 | 7B | 0.3440 | 0.5976 | 0.5810 | 0.3364 | 0.9037 | 0.2623 | 0.5042 |
Code generation tasks
Model | Size | JHumanEval | HumanEval |
---|---|---|---|
pass@1 | pass@1 | ||
CyberAgentLM2-7B | 7B | 0.0634 | 0.0756 |
Llama 2 | 7B | 0.1152 | 0.1378 |
japanese-stablelm-base-beta-7b | 7B | 0.1018 | 0.1280 |
japanese-stablelm-base-ja_vocab-beta-7b | 7B | 0.0896 | 0.1122 |
ELYZA-japanese-Llama-2-7b | 7B | 0.0287 | 0.0427 |
ELYZA-japanese-Llama-2-7b-fast | 7B | 0.0000 | 0.0037 |
youri-7b (base) | 7B | 0.0829 | 0.0982 |
Swallow-7b | 7B | 0.0183 | 0.0183 |
Swallow-7b-plus | 7B | 0.0061 | 0.0037 |
Qwen-7B | 7B | 0.1701 | 0.1805 |
nekomata-7b | 7B | 0.0988 | 0.1402 |
Mistral-7B-v0.1 | 7B | 0.2555 | 0.2933 |
japanese-stablelm-base-gamma-7b | 7B | 0.1823 | 0.1915 |
Swallow-MS-7b-v0.1 | 7B | 0.2305 | 0.2768 |
Evaluation Benchmarks
Japanese evaluation benchmarks
We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows:
- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022])
- Open-ended question answering (JEMHopQA [Ishii+, 2023])
- Open-ended question answering (NIILC [Sekine, 2003])
- Machine reading comprehension (JSQuAD [Kurihara+, 2022])
- Automatic summarization (XL-Sum [Hasan+, 2021])
- Machine translation (WMT2020 ja-en [Barrault+, 2020])
- Machine translation (WMT2020 en-ja [Barrault+, 2020])
- Mathematical reasoning (MGSM [Shi+, 2023])
English evaluation benchmarks
We used the Language Model Evaluation Harness(v.0.3.0). The details are as follows:
- Multiple-choice question answering (OpenBookQA [Mihaylov+, 2018])
- Open-ended question answering (TriviaQA [Joshi+, 2017])
- Machine reading comprehension (SQuAD 2.0 [Rajpurkar+, 2018])
- Commonsense reasoning (XWINO [Tikhonov & Ryabinin, 2021])
- Natural language inference (HellaSwag [Zellers+, 2019])
- Mathematical reasoning (GSM8k [Cobbe+, 2021])
Code evaluation benchmarks
We utilized the Code Generation LM Evaluation Harness [Allal+, 2022] (commit #0261c52). The details are as follows:
- Code generation (HumanEval [Chen+, 2021])
- Code generation in Japanese (JHumanEval [Satoh+, 2024])
Usage
First install additional dependencies in requirements.txt:
pip install -r requirements.txt
Instruction format Ver1.0
This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.
The template used to construct a prompt for the Instruct model is specified as follows:
<s>[INST] <<SYS>>\n{Instruction}\n<</SYS>>\n\n{USER_MESSAGE_1} [INST] {BOT_MESSAGE_1} </s>[INST] {USER_MESSAGE_2}[/INST]
Please be aware that <s>
and </s>
are special tokens used for the beginning of string (BOS) and end of string (EOS), respectively, while [INST] and [/INST] are considered regular strings.
Use the instruct model Ver1.0
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "tokyotech-llm/Swallow-MS-7b-instruct-v1.0"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = "cuda"
messages = [
{"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"},
{"role": "user", "content": "東京工業大学の主なキャンパスについて教えてください"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=128, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Use the base model
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "tokyotech-llm/Swallow-MS-7b-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
prompt = "東京工業大学の主なキャンパスは、"
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=128,
temperature=0.99,
top_p=0.95,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
Training Datasets
Continual Pre-Training
The following datasets were used for continual pre-training.
Instruction Tuning
Ver1.0
The following datasets were used for the instruction tuning.
- OpenAssistant Conversations Dataset was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the Mixtral-8x7B-Instruct-v0.1 model.
- OpenAssistant Conversations Dataset 21k Ja
- OpenAssistant Conversations Dataset 21k En
- Databricks Dolly 15k Ja
- Databricks Dolly 15k En
Please note that some of the data had issues with quality or format, so not all of it was used.
Risks and Limitations
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
Acknowledgements
We thank Mistral AI for releasing Mistral 7B v0.1 under an open license for others to build on.
Our project is supported by the ABCI Large-scale Language Model Building Support Program of the National Institute of Advanced Industrial Science and Technology.
License
apache-2.0
Authors
Here are the team members:
- From Okazaki Laboratory, the following members:
- From YOKOTA Laboratory, the following members: