Model card for nextvit_small.bd_ssld_6m_in1k
A Next-ViT image classification model. Trained by paper authors on an unknown 6M sample dataset and ImageNet-1k using SSLD distillation.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 31.8
- GMACs: 5.8
- Activations (M): 17.6
- Image size: 224 x 224
- Pretrain Dataset: Unknown-6M
- Dataset: ImageNet-1k
- Papers:
- Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios: https://arxiv.org/abs/2207.05501
- Original: https://github.com/bytedance/Next-ViT
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('nextvit_small.bd_ssld_6m_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'nextvit_small.bd_ssld_6m_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 96, 56, 56])
# torch.Size([1, 256, 28, 28])
# torch.Size([1, 512, 14, 14])
# torch.Size([1, 1024, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'nextvit_small.bd_ssld_6m_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1024, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
By Top-1
model | top1 | top1_err | top5 | top5_err | param_count |
---|---|---|---|---|---|
nextvit_large.bd_ssld_6m_in1k_384 | 86.542 | 13.458 | 98.142 | 1.858 | 57.87 |
nextvit_base.bd_ssld_6m_in1k_384 | 86.352 | 13.648 | 98.04 | 1.96 | 44.82 |
nextvit_small.bd_ssld_6m_in1k_384 | 85.964 | 14.036 | 97.908 | 2.092 | 31.76 |
nextvit_large.bd_ssld_6m_in1k | 85.48 | 14.52 | 97.696 | 2.304 | 57.87 |
nextvit_base.bd_ssld_6m_in1k | 85.186 | 14.814 | 97.59 | 2.41 | 44.82 |
nextvit_large.bd_in1k_384 | 84.924 | 15.076 | 97.294 | 2.706 | 57.87 |
nextvit_small.bd_ssld_6m_in1k | 84.862 | 15.138 | 97.382 | 2.618 | 31.76 |
nextvit_base.bd_in1k_384 | 84.706 | 15.294 | 97.224 | 2.776 | 44.82 |
nextvit_small.bd_in1k_384 | 84.022 | 15.978 | 96.99 | 3.01 | 31.76 |
nextvit_large.bd_in1k | 83.626 | 16.374 | 96.694 | 3.306 | 57.87 |
nextvit_base.bd_in1k | 83.472 | 16.528 | 96.656 | 3.344 | 44.82 |
nextvit_small.bd_in1k | 82.61 | 17.39 | 96.226 | 3.774 | 31.76 |
Citation
@article{li2022next,
title={Next-ViT: Next Generation Vision Transformer for Efficient Deployment in Realistic Industrial Scenarios},
author={Li, Jiashi and Xia, Xin and Li, Wei and Li, Huixia and Wang, Xing and Xiao, Xuefeng and Wang, Rui and Zheng, Min and Pan, Xin},
journal={arXiv preprint arXiv:2207.05501},
year={2022}
}
- Downloads last month
- 442
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.