Model card for hiera_small_224.mae_in1k_ft_in1k
A Hiera image classification model. Pretrained on ImageNet-1k with Self-Supervised Masked Autoencoder (MAE) method and fine-tuned on ImageNet-1k.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 35.0
- GMACs: 6.0
- Activations (M): 17.3
- Image size: 224 x 224
- Dataset: ImageNet-1k
- Papers:
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: https://arxiv.org/abs/2306.00989
- Masked Autoencoders Are Scalable Vision Learners: https://arxiv.org/abs/2111.06377
- Original: https://github.com/facebookresearch/hiera
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('hiera_small_224.mae_in1k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'hiera_small_224.mae_in1k_ft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 96, 56, 56])
# torch.Size([1, 192, 28, 28])
# torch.Size([1, 384, 14, 14])
# torch.Size([1, 768, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'hiera_small_224.mae_in1k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 49, 768) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
By Top-1
model | top1 | top5 | param_count |
---|---|---|---|
hiera_huge_224.mae_in1k_ft_in1k | 86.834 | 98.01 | 672.78 |
hiera_large_224.mae_in1k_ft_in1k | 86.042 | 97.648 | 213.74 |
hiera_base_plus_224.mae_in1k_ft_in1k | 85.134 | 97.158 | 69.9 |
hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k | 84.912 | 97.260 | 35.01 |
hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k | 84.560 | 97.106 | 35.01 |
hiera_base_224.mae_in1k_ft_in1k | 84.49 | 97.032 | 51.52 |
hiera_small_224.mae_in1k_ft_in1k | 83.884 | 96.684 | 35.01 |
hiera_tiny_224.mae_in1k_ft_in1k | 82.786 | 96.204 | 27.91 |
Citation
@article{ryali2023hiera,
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
author={Ryali, Chaitanya and Hu, Yuan-Ting and Bolya, Daniel and Wei, Chen and Fan, Haoqi and Huang, Po-Yao and Aggarwal, Vaibhav and Chowdhury, Arkabandhu and Poursaeed, Omid and Hoffman, Judy and Malik, Jitendra and Li, Yanghao and Feichtenhofer, Christoph},
journal={ICML},
year={2023}
}
@Article{MaskedAutoencoders2021,
author = {Kaiming He and Xinlei Chen and Saining Xie and Yanghao Li and Piotr Doll{'a}r and Ross Girshick},
journal = {arXiv:2111.06377},
title = {Masked Autoencoders Are Scalable Vision Learners},
year = {2021},
}
- Downloads last month
- 586
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.