Edit model card

distilhubert_multilabel_audioset_subset_50epochs

This model is a fine-tuned version of ntu-spml/distilhubert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1095
  • Accuracy: 0.9813
  • F1: 0.1445
  • Precision: 0.2747
  • Recall: 0.0980

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0904 1.0 257 0.0826 0.9839 0.0 0.0 0.0
0.0784 2.0 514 0.0808 0.9839 0.0 0.0 0.0
0.0816 3.0 771 0.0806 0.9839 0.0 0.0 0.0
0.0775 4.0 1028 0.0802 0.9839 0.0 0.0 0.0
0.0748 5.0 1285 0.0795 0.9839 0.0 0.0 0.0
0.0796 6.0 1542 0.0783 0.9839 0.0 0.0 0.0
0.0789 7.0 1799 0.0774 0.9839 0.0 0.0 0.0
0.0835 8.0 2056 0.0760 0.9839 0.0 0.0 0.0
0.0698 9.0 2313 0.0751 0.9839 0.0057 0.9048 0.0029
0.0715 10.0 2570 0.0738 0.9839 0.0170 0.6477 0.0086
0.0693 11.0 2827 0.0731 0.9839 0.0190 0.6809 0.0096
0.0665 12.0 3084 0.0732 0.9839 0.0202 0.6476 0.0103
0.0645 13.0 3341 0.0725 0.9838 0.0415 0.4675 0.0217
0.0633 14.0 3598 0.0724 0.9838 0.0479 0.4841 0.0252
0.0574 15.0 3855 0.0724 0.9836 0.0585 0.4066 0.0315
0.0608 16.0 4112 0.0731 0.9836 0.0614 0.4143 0.0332
0.0541 17.0 4369 0.0736 0.9836 0.0733 0.4263 0.0401
0.0554 18.0 4626 0.0738 0.9836 0.0712 0.4041 0.0390
0.0501 19.0 4883 0.0745 0.9836 0.0758 0.4233 0.0416
0.0533 20.0 5140 0.0759 0.9836 0.0788 0.4111 0.0436
0.0415 21.0 5397 0.0768 0.9836 0.0820 0.4131 0.0455
0.047 22.0 5654 0.0778 0.9835 0.0939 0.4079 0.0531
0.0451 23.0 5911 0.0797 0.9831 0.0979 0.3533 0.0568
0.0422 24.0 6168 0.0805 0.9829 0.1079 0.3408 0.0641
0.0419 25.0 6425 0.0823 0.9826 0.1106 0.3119 0.0672
0.0378 26.0 6682 0.0837 0.9826 0.1132 0.3167 0.0689
0.0439 27.0 6939 0.0858 0.9823 0.1231 0.3104 0.0767
0.0357 28.0 7196 0.0869 0.9828 0.1086 0.3352 0.0648
0.0375 29.0 7453 0.0882 0.9826 0.1157 0.3248 0.0704
0.0378 30.0 7710 0.0906 0.9826 0.1121 0.3159 0.0681
0.0355 31.0 7967 0.0923 0.9825 0.1179 0.3122 0.0727
0.0307 32.0 8224 0.0938 0.9825 0.1174 0.3137 0.0722
0.0293 33.0 8481 0.0948 0.9820 0.1298 0.2949 0.0832
0.0323 34.0 8738 0.0965 0.9819 0.1325 0.2942 0.0855
0.0271 35.0 8995 0.0972 0.9822 0.1314 0.3124 0.0832
0.0281 36.0 9252 0.0990 0.9818 0.1392 0.2949 0.0911
0.0254 37.0 9509 0.1003 0.9816 0.1362 0.2809 0.0899
0.0277 38.0 9766 0.1012 0.9820 0.1325 0.2995 0.0850
0.0263 39.0 10023 0.1025 0.9817 0.1437 0.2936 0.0951
0.0235 40.0 10280 0.1043 0.9820 0.1344 0.3005 0.0865
0.024 41.0 10537 0.1050 0.9816 0.1419 0.2860 0.0944
0.0256 42.0 10794 0.1057 0.9815 0.1382 0.2778 0.0920
0.0251 43.0 11051 0.1068 0.9816 0.1380 0.2846 0.0911
0.025 44.0 11308 0.1077 0.9815 0.1401 0.2806 0.0933
0.0235 45.0 11565 0.1083 0.9814 0.1434 0.2790 0.0965
0.0219 46.0 11822 0.1088 0.9813 0.1405 0.2712 0.0948
0.0222 47.0 12079 0.1088 0.9813 0.1443 0.2773 0.0975
0.023 48.0 12336 0.1093 0.9812 0.1452 0.2730 0.0989
0.0208 49.0 12593 0.1095 0.9813 0.1442 0.2749 0.0977
0.0211 50.0 12850 0.1095 0.9813 0.1445 0.2747 0.0980

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for thollmann/distilhubert_multilabel_audioset_subset_50epochs

Finetuned
(391)
this model